

Structural Group Unfairness Measurement and Mitigation by means of the Effective Resistance

TrustLoG Workshop @ WWW 2024 – Singapore / Virtual

14 May 2024

https://arxiv.org/pdf/2305.03223.pdf

What is Social Capital?

The Information Flow in the network determines the social capital of individuals Disparities on the position in the network \rightarrow Disparities in the individual Social Capital [Bashardoust 2023]

e l l i s

Group Unfairness in Social Capital

Different Position in the Network \rightarrow Disparities in Social Capital

[Arnaiz-Rodriguez et al, 2024]

Groups are distributed in the network in different ways → different flow of information on different groups → different social capital (Unfairness in Social Capital)

Structural Group Unfairness SGU

ρ

Accurate Measurement of Information Flow

Effective Mitigation of Structural Group Unfairness

Measure Group Social Capital via Information Flow

Information flow in the network determines the node's information access and control

Previous work use metrics that

- Fail to capture the global properties of the topology \rightarrow Shortest-path
- Lack of theoretical interpretation and guarantees \rightarrow IC

• **Pairwise distances** between nodes

We propose to use Effective Resistance (R_{uv}) as the pairwise distance metric

- **Pairwise information distance** based on Spectral Graph Theory
- Captures global behavior and long-range dependencies
- $\mathbf{R}_{uv} \propto \text{the expected time to reach } \mathbf{v}$ from \mathbf{u} and come back to \mathbf{u}
 - Average of *all existing paths* between u and v!

We define the (inverse) social capital of a single node as the total sum of all it's distances to everyone else

$$R_{tot}(u) = \sum_{v \in \mathcal{V}} R_{uv}$$

Measures of Group Social Capital

Group Isolation

The **lower** the better

 $\mathrm{R}_{\mathrm{tot}}(S_i) = \mathbb{E}_{u \sim S_i}\left[\mathrm{R}_{\mathrm{tot}}(u)
ight]$

Expected \mathbf{R}_{uv} when sampling one node from group S_i and another node at random

Intuition: average distance to everyone for the nodes of the group

 $R_{tot}(\mathbf{S}) = 25.9 - WORST$

Group Diameter

The lower the better

$$\mathcal{R}_{ ext{diam}}(S_i) = \mathbb{E}_{u \sim S_i} \left[\max_{v \in \mathcal{V}} R_{uv}
ight]$$

Expected **worst-case** R_{uv} when sampling one node from group S_i and another node at random

Intuition: average maximum distance for the nodes of the group

Group Control

The higher the better

$$\mathsf{B}_{\mathsf{R}}(S_i) = \mathbb{E}_{u \sim S_i}[\mathsf{B}_{\mathsf{R}}(u)]$$

$$\mathsf{B}_\mathsf{R}(u) = \sum_{v \in \mathcal{N}(u)} R_{uv}$$

Expected **Information bottleneck** (similar to node's Ricci curvature)

Intuition: average information control for the nodes of the group

Measures of Structural Group Unfairness (SGU)

Based on Rawlsian concept of Fairness, SGU measures the social capital gap for the most disadvantaged group

Isolation Disparity

Diameter Disparity

Control Disparity

$$R_{\text{tot}}(S_i) = R_{\text{tot}}(S_j), \forall i, j \in SA. \qquad \mathcal{R}_{\text{diam}}(S_i) = \mathcal{R}_{\text{diam}}(S_j), \forall i, j \in SA. \qquad B_{\text{R}}(S_i) = B_{\text{R}}(S_j) = 2 - \frac{2}{|\mathcal{V}|}, \forall i, j \in SA. \qquad \Delta B_{\text{R}} = \max_{i,j \in SA}(R_{\text{tot}}(S_i) - R_{\text{tot}}(S_j)). \qquad \Delta \mathcal{R}_{\text{diam}} = \max_{i,j \in SA}(\mathcal{R}_{\text{diam}}(S_i) - \mathcal{R}_{\text{diam}}(S_j)). \qquad \Delta B_{\text{R}} = \max_{i,j \in SA}(B_{\text{R}}(S_i) - B_{\text{R}}(S_j)).$$

G	$R_{tot}\downarrow$		$\mathcal{R}_{diam}\downarrow$		B _R ↑
Facebook (female)	221.4	Δ R _{tot}	2.29	$\Delta \mathcal{R}_{diam}$	1.93 ∆ B _R
Facebook (male)	179.8	41.62	2.25	0.042	2.03 0.107
UNC28 (female)	608.6	ΔR_{tot}	2.11	$\Delta \mathcal{R}_{diam}$ 0.006	1.99 ΔB _R
UNC28 (male)	586.3	22.4	2.11		2.00 0.009
Google+ (female)	564.1	Δ R _{tot}	1.31	$\Delta \mathcal{R}_{diam}$ 0.078	1.81 $\triangle B_R$
Google+ (male)	287.7	276.4	1.24		2.32 0.51

Group social capital and SGU in real-world online social networks. Group with the largest social capital is highlighted in bold.

How to mitigate SGU?

Common RecSys \rightarrow similarity \rightarrow segregation, polarization

RecSys maximize engagement \rightarrow Same SGU

Create **weak connections** improves the information flow Reduces polarization, discrimination and **isolation** Improves diversity and connects minorities Unifies the information control

Granovetter. The strength of weak ties: A network theory revisited. *Sociological theory* (1983) Burt. 2004. Structural holes and good ideas. *American journal of sociology* (2004) Arnaiz-Rodriguez, et al. Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance. (2024)

ERG: Edge Augmentation to mitigate SGU

- Use Effective Resistance informed edge addition reduce the disparities in social capital between groups and individuals while also improve the social capital for all groups
- Problem defined as a budgeted densifier problem

$$G' = \min_{G' = (\mathcal{V}, \mathcal{E}')} \quad \mathbb{E}_{u,v \sim V \times V} \left[R_{uv} \right] \quad \text{s.t.} \quad |\mathcal{E}' \setminus \mathcal{E}| = B \quad \mathcal{E} \subset \mathcal{E}'$$

```
Add the edge between nodes with maximum R_{uv}
on which (at least) one endpoint on the discriminated group
– Maximum ER edges allow to connect minorities –
As ER is heavily theoretically grounded,
this simple approach is effective and provides strong insights:
– Theoretically a greedy optimal desnsifier wrt Information Flow -
– E.g.: Adding max R_{uv} improve the robustness and over-squashing (proxies of Information Flow) –
```

(÷

 $R_{u,v} \forall (u, v) \in \mathcal{V} \times \mathcal{V}$

G'

20

10

Experiments on Real World: Group SC and SGU

Results on 3 real-world online social networks: Facebook, UNC and Google+

(a) Facebook (<i>B</i> =50)			(b) UNC28 (<i>B</i> =5000)			(c) Google+ (<i>B</i> =5000)					
G (original)	Δ R _{tot} 41.62	$\Delta \mathcal{R}_{diam}$ 0.042	ΔB _R 0.107	G (original)	$\begin{array}{c} \Delta \ { m R}_{tot} \ 22.4 \end{array}$	$\Delta \mathcal{R}_{diam}$ 0.006	ΔB _R 0.009	G (original)	Δ R _{tot} 276.4	$\Delta \mathcal{R}_{diam}$ 0.078	Δ B _R 0.51
Random	38.7	0.039	0.108	Random	19.8	0.005	0.014	Random	129.4	0.037	0.47
DW	36.3	0.031	0.104	DW	22.2	0.006	0.004	$\mathbf{D}\mathbf{W}$	274.1	0.078	0.51
Cos	28.7	0.029	0.120	Cos	19.1	0.005	0.102	Cos	86.8	0.025	0.47
ERG	10.3	0.009	0.098	ERG	8.8	0.002	0.003	ERG	37.1	0.011	0.29

- ERG significantly reduces SGU
- ERG is effective even adding few links
- Reduces SGU while improving the social capital of all groups

Take-home ideas

Social Networks are very useful to analyze social dynamics or make predictions about people and their relationships

Specific [Arnaiz-Rodriguez, Curto and Oliver 2024]:

Arnaiz-Rodriguez, Adrian, Georgina Curto, and Nuria Oliver.

"Structural Group Unfairness: Measurement and Mitigation by means of the Effective Resistance." TrustLoG at WWW. (2024)

adrian@ellisalicante.org

@arnaiztech

 $\langle 0 \rangle$

elli s

Extra: More Baselines

(a) Facebook (<i>B</i> =50)				(b) UNC28 (<i>B</i> =5000)			
G (original)	$\begin{array}{c} \DeltaR_{tot}\ 41.62 \end{array}$	$\Delta \mathcal{R}_{diam} \\ 0.042$	ΔB_{R} 0.107	G (original)	$\begin{array}{c} \Delta{\rm R_{tot}}\ 22.4 \end{array}$	$\Delta \mathcal{R}_{diam} \\ 0.006$	$\Delta {\sf B}_{\sf R}$ 0.009
Random	38.7	0.039	0.108	Random	19.8	0.005	0.014
SDRF	41.6	0.042	0.106	SDRF	22.2	0.006	0.007
FOSR	34.5	0.027	0.109	FOSR	19.7	0.005	0.017
DW	36.3	0.031	0.104	DW	22.2	0.006	0.004
Cos	28.7	0.029	0.120	Cos	19.1	0.005	0.102
ERG	10.3	0.009	0.098	ERG	8.8	0.002	0.003
S-DW	43.6	0.041	0.103	S-DW	20.6	0.006	0.008
S-Cos	41.4	0.042	0.105	S-Cos	22.1	0.006	0.019
S-ERG	41.6	0.042	0.107	S-ERG	22.3	0.006	0.004

Ω

2500 5000 # added links

(c) Google+ (<i>B</i> =5000)						
G (original)	$\Delta\mathrm{R_{tot}}$ 276.4	$\Delta \mathcal{R}_{diam} \\ 0.078$	$\begin{array}{c} \Delta {\sf B}_{\sf R} \\ 0.51 \end{array}$			
Random	129.4	0.037	0.47			
SDRF	276.1	0.079	0.52			
FOSR	240.7	0.068	0.50			
DW	274.1	0.078	0.51			
Cos	86.8	0.025	0.47			
ERG	37.1	0.011	0.29			
S-DW	272.5	0.078	0.49			
S-Cos	236.0	0.067	0.47			
S-ERG	276.4	0.079	0.52			

Extra: More Results – Metrics Distribution

Extra: More Results – Control Evolution

Extra: More Results – Large Budget

Effect on the Network Structure

e l l i s