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Introduction: Brain MRI and Neuroimaging

Introduction -

Bran Magnetic Resonance 
Images: brain images obtained 
through a magnetic resonance.

Neuroimaging: study of 
morphological features of the 
human brain and its correlations 
with neurological disorders to 
improve medical systems.

[1] Changhee Han, et. Al. Infinite brain tumor images: Can gan-based data augmentation improve tumor detection on mr images?, 2018. 
[2] Florian Knoll, et al. FastMRI: A publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction 
using machine learning, 2020.
[3] Daiki Tamada. Noise and artifact reduction for mri using deep learning, 2020

Relevance: cutting edge projects 
in neuroimaging research areas.

Overlapped objectives: 
advance in some of them leads to 
the advance in another.

Image reconstruction through 
information compression 
techniques helps every other 
problem.

Disease Detection 
and segmentation

Improvement of 
Data Acquisition

Data 
AugmentationBrain MR Image 

enhancenment

Image 
Reconstruction
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Main approach: Reconstruction through lower dimension distribution

Approach: capture the representation of the underlying structure of healthy brains in a lower-dimensional space and reconstruct 
from this under-sampled data.

ML Topics: Representation learning, dimensionality reduction, Normative model, information compression, representation in latent 
space, lower dimension distribution…

Introduction   -

Convolutional Auto Encoders

❑ Train with disease-free neuroimaging data

❑ This autoencoder, would define a normal range (or distribution) for the 
neuroanatomical variability for the illness absence. 

❑ It learns the brain structure representation.

❑ Once trained, it encodes an input image and reconstructs it without 
corruptions like noise, artifacts or lessons. 



Deep CAE for reconstructing magnetic 
resonance images of the healthy brain 5

[1] Andriy Myronenko. 3d MRI brain tumor segmentation using autoencoder regularization. 2018. | [2] José V. Manjon et. al. Blind MRI brain lesion inpainting using deep learning. 2020. | [3] Camilo Bermudez et. al. 
Learning implicit brain MRI manifolds with deep learning. 2018. | [4] E. M. Yu et. al. A convolutional autoencoder approach to learn volumetric shape representations for brain structures. 2019. | [5] Walter HL Pinaya et. al. 
Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. 2019. | [6] Theo Estienne et. al. Deep learning-based concurrent brain registration 
and tumor segmentation. 14, 2020. [7] Florian Knoll, et al. FastMRI: A publicly available raw k-space and dicom dataset of knee images for accelerated mr image reconstruction using machine learning, 2020.

Residual Networks
• Mapping image to target: H(x)
• Approximate the residual of this 

function: F(x) = H(x) − x 
• Get the original function: F(x) + x
• Different kinds of building blocks
✓ Addresses vanishing gradient problem
✓ Less complexity by learning residuals

Skip Connection CAEs
• Add or concatenate values from 

encoder to decoder layers
✓ Addresses vanishing gradient problem
✓ Better low-detail reconstruction

U-Net and V-Net
• 3D convolutional networks
• Symmetric skip connections with 

concatenation.
• V-NET adds residual building blocks.

Loss Functions
• Mean Square Error (MSE)
• Structural Dissimilarity (DSSIM)
• Peak signal to noise ratio (PSNR)
• 3D: Dice Loss
• VAE: KL Divergence

FastMRI, 2020 [7]
• Facebook AI and New York University Project
• Accelerate MRI scan process generating MRI from 

under-sampled data. Invited to NeurIPS

BRATS: Myronenko, 2018 [1]
Residual Variational Autoencoder to regularize residual 
brain tumor segmentation network.

BRATS: T. Estienne et. al., 2020 [6]
V-NET autoencoder for tumor segmentation and image 
registration

Yu et. al., 2019 [4]
Residual CAE+STM to learn volumetric shape 
representations for brain structures

C. Bermudez et. Al., 2018 [3]
Skip connection CAE for denoising and learn brain 
manifolds

J. Manjón et. al., 2020 [2]
UNet based network for lesson inpainting for improve 
of brain analysis pipelines

W. Pinaya et. al., 2019 [5] 
CAE for unsupervised anomaly detection with 
normative model

Architectures

Intensity 
Normalization
Range [0,1]
Mean 0 and std 1

Downsampling
Reduce the dimension 
of the input data

Contrast and Bright 
enhancement
Enhance the image 
quality before using it 
as input and output

Could lead to 
destroying some 
important clinical 
aspects despite it looks 
better

Data Augmentation
Random input data 
modifications to 
improve model 
performance 
• Noise
• Rotations
• …

MRI
Preprocessing

Applications

State Of The Art: Related works

Profile Selection
Most projects works with 
volumes: 3D

Non-isotropic MRI:
• Use dimension that 

make slices are high 
resolution

Profile and Relevant 
Slide Selection

Relevant Slide 
Selection
Select slices with relevant 
information, with some 
amount of brain
• Middle Slice [3]
• Fixed Range

SoTA -
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Development: Overview of Experiment Pipeline
All Original IXI Volumes

Slice extraction and selection

• Profile Selection
Select profile which give us high-definition 
images: SAGITTAL

• Orientation checking
Check all the volumes have the same orientation 

• Slice extraction and selection
Select slices with relevant information:
✓ DeepBrain: Brain segmentation

Bunch of slices with 
relevant information

We have all the original IXI brain T1 
weighted MRI volumes

We store in a folder all jpg files 
of selected MRI images

Train – Test Split and Normalization

Data Splited

Train/Validation Test

• Data split
80-20 train/validation and test 
Stratified by sex, age and ethnic.

• Preprocessing
We normalize the pixels values in 
pictures on range [0-1]

We downsample the images to 128x128
Both Will be made on the fly

Stored in separate folders.

These images are our input and 
also target images. 

Data augmentation

Experiments

• Data Augmentation
• Blank-out regions
• Noise

• Gaussian
• Dropout pixels

• Blur images

Random level of each Augmentation in every picture

Target Image

. . .

. . .

• Get metrics on test set
Compare models quantitatively and qualitatively

Quantitative and Qualitative evaluation

• Training

Results

Development -

• Architectures
CAE based on:

• Resnet-based building blocks
• Cae + skip-connections
• Resnet + Skip connections (V-Net based)

• Loss functions:
• MSE
• DSSIM

• Regularization:
• L2 
• Batch Normalization
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Development: Dataset Exploration
• IXI BRAIN T1- Weighted Dataset from Imperial College of London

Development   -

IXI BRAIN T1- Weighted Dataset from Imperial College of London
► 584 3D MRI volumes → Nifti Format
► Voxel dimension: 1st and 2nd dimension → Isotropic

• 0.9375 × 0.9375 × 1.2mm3 → 576 volumes 
• 0.9766 × 0.9766 × 1.2mm3 → 5 volumes

► Volume dimension (in voxels):
• 256 x 256 x [150, 146, 140, 130]

General Data

Profile Selection

Orientation checking

► Slices must be high resolution: 1x1  mm3 rather than 1x2 mm3 
► The 1st and 2nd dimension → Isotropic for all volumes
► We must freeze 3rd dimension to get our isotropic 2d images
► Sagittal view

► Obtain the same brain slice view for all patients
► Same orientation for every volume: P, S, R.

• 1st voxel axis goes from anterior to Posterior, 
• 2nd voxel axis goes from inferior to Superior
• 3rd voxel axis goes from left to Right

Total

86794
Brain Sagittal 2D images



Deep CAE for reconstructing magnetic 
resonance images of the healthy brain 8

Development: Relevant slices selection I

• Not every slice has relevant information

• Middle slice and fixed middle range methods are inefficient approaches

Development   -

info =

Non-zero intensity pixel count

• Count pixels with intensity distinct from 0

• Discard slices which are low-outliers in the distribution
• Low-outliers → Few pixels non-black → no relevant information

• Thresholds based in outliers : -3std, Q1-1.5*IQR and Q1.

• Not as good as expected

• Weak against noisy points and non-brain structures

Mean of intensity of non-zero pixels

• Compute the mean of pixels with intensity distinct from 0

• Discard slices which are low-outliers in the distribution
• Low-outliers → Low mean intensity → no relevant information

• Thresholds based in observations and try and fail.

• Not as good as expected

• Weak against noisy shiny points and strange structures
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Development: Relevant slices selection II

Development   -

Our approach: DeepBrain [1] → Pretrained CNN for brain segmentation
• Return mask of probabilities of each pixel belonging to brain
• Low-Threshold: 4.5% of brain pixels
• Final relevant slices: 59278

[1] Deep Brain, Ivan Itzcovich, 2018, https://github.com/iitzco/deepbrain

i =

IXI013

IXI337

IXI480

Non-zero intensity pixel count Mean of intensity of non-zero pixels Deep Brain
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Development: Split data

• i.i.d: Data must be independent and identically distributed between Train, Validation and Test sets

• Independence: avoid big correlations
• Close images from the same volume → Almost equal → Should not be in different splits
• Solution: Split straight from volumes

• Identically distributed: Stratify volumes by demographic features
• Stratify by AGE Group, SEX and ETHINIC

Development   -

Slices 67 and 68

46285

78.1%

Total

59278

8169

13.8%

4824

8.1%

Train

Validation

Test
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Development: Architectures I
Design Guidelines:

• Make Shallow models → IoT, mobile and remote places

• Compare

• Skip-Connection archt. VS Residuals archt. VS its combination

• MSE VS DSSIM loss functions

• L2 Regularization VS No regularization

• Do not use neither max pooling nor classical upsampling [1]
• Discards relevant features

• Use stride=2 in convolutions and transpose convolutions

Development   -

Building Blocks:

Architectures

[1] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using convolutional autoencoders with symmetric skip connections. 2016.
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Development: Architectures II

Development   -

Architectures summary:

• Shallow residual autoencoder: 
• Original building block

• Full-pre-activation building block 

• Skip connection convolutional autoencoder

• Myronenko Autoencoder [1]

• Residual U-NET: Proposed one
• Combination of U-NET-based and residual building blocks

• V-Net-based in 2D

[1] Andriy Myronenko. 3d MRI brain tumor segmentation using autoencoder regularization. 2018.
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Development: Environment and data generator

Development   -

On Device
• HP Omen i7-9H 2.6G
• 16GB RAM
• NVIDIA GeForce GTX 

1660 Ti: 6GB of 
GDDR6 RVAM

Coding Environment
• Python 3.7.9
• Tensorflow-gpu 2.3.1
• TF Bulit-in Keras 2.4.0
• CUDA 10.1
• CuDNN 7.6.5
• Miniconda with Jupyter

notebooks
• Visual Studio Code
• Github and Zenhub

Dropout pixels
• Random level [0 - 5] %

Gaussian Noise
• Random level [0 - 0,04] STD

Gaussian Blur
• σ = 0.6, p = 0.1

Blank-out Region
• Random position
• Random size
• p = 0.1

Environment

Customized Tensorflow Data Loader 
• Tf.data
• 4 times faster than classical Keras method 

ImageDataGenerator.flow_from_directory

Data preprocessing and augmentation 
ON THE FLY
• While the model is training

Optimized through PARALELLISM and 
PREFETCHING data in memory
• Read images, preprocess, augment and prefetch in a 

parallel way

Everything made with Native Tensorflow
functions
• Improves performance

• Faster load, preprocess, augment, prefetch 
and parallelize

• Tf.Tensors
• Tf.Dataset (prefetch, batch map…)
• Tf.math
• Tf.image
• Tensorflow-addons (data aug)
• …

Data Loader/Generator Data Augmentation

Why on premise?

Address the software speed 
optimization problem

Downsampling
• 128x128

Normalization
• Range [0-1]
• Activation function of last layer

MRI Preprocessing

Sigmoid

!
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Development: Experiments Without Data Augmentation

Development   -

• Models trained
• Skip connection CAE
• Shallow RES full-pre
• Shallow RES full-pre +L2
• Shallow RES original
• Myronenko CAE
• Myronenko CAE + L2

• Loss Functions
• MSE Pixel-wise:

Train Parameters
Batch

Size 32

Epochs

Max 100

RMSProp Optimizer

LR 1e-3

epsilon 1e-7

Early Stopping

Patience 20

Min delta
MSE 2e-7

DSSIM 5e-5

Reducer LR on Plateau

Factor 0.2

Patience 4

L2 Regularizer (if used)

Value 1e-5

1

𝑁
෍

𝑖=𝑛

𝑛

𝑌𝑖 − ෡𝑌𝑖
2

• Test Metrics
• MSE
• DSSIM:

• PSNR:

1 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦)

2

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝑐1 2𝜎𝑥𝑦 + 𝑐2

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1 𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2

*

10 x log10
peakval2

MSE x, y* Experiments without data 
augmentation has been done for 
watching how models overfit and 
for checking the code of scripts 
and Python Classes.
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Development: Experiments With Data Augmentation

Development   -

• Models trained
• Residual U-NET (Proposed)
• Shallow RES full-pre
• Shallow RES full-pre +L2
• Skip connection CAE
• Skip connection CAE + L2
• Myronenko CAE

• Loss Functions
• MSE
• DSSIM
• Every architecture with each 

loss: 12 final models

• Test Metrics
• MSE
• DSSIM
• PSNR

• Train Parameters
• Same

DSSIM MSE
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Results: Quantitative

• Residual U-Net shows best results both for MSE and DSSIM Loss

• Shallow Residual full-pre follows in both 

• L2 regularization improves model when DSSIM is used as loss
• But L2 decreases performance when loss is MSE

• Results with statistical significance: Dependent t-test

Results -

MRI
Reconstruction
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Results: Qualitative DSSIM MSE

No L2 L2VS

VS

Skip
connection

Residual
blocks CombinationVS VS

· Archt: Residual U-net top at reconstruction performance

· Loss: DSSIM models reconstruct with more structural intention

· L2: helps when DSSIM is used, unlike when MSE is used

· Combination of residual and skip-connections highly boost 
reconstruction performance

How models reconstruct MR images?
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Conclusion

• Residual U-Net outperforms all methods for both loss functions Qualitatively and Quantitatively

• DSSIM loss models reconstruct better the structure and shape of the brain

• L2 regularization enhance DSSIM-loss models, but decreases MSE-loss ones

• Combination of skip connections and residual blocks outperforms each one individually

• All methods are outstanding reconstructing Gaussian noise and fixing image blur

• Dropped-out pixels are excellent reconstructed by every model but Shallow-Residual ones, which left some little noisy pixels

• Blanked-out regions are better reconstructed by DSSIM models, specifically Res-UNET and Shallow-Residual

Development   -
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Further work

► Deepen understanding of the performance difference
► Visual exploration of activation of feature maps of each layer [1]
► Visual exploration of latent space

► More reconstruction experiments
► Reconstruct sides of the brain to see the performance improvement given by 

DeepBrain relevant slice selection method
► More information → Better learning

eXplainable Artificial 
Intelligence (XAI)

Potential trained 
model applications

Train more models

► Unsupervised abnomaly detection. CAE as normative model. Pinaya et. al. [2]
► Improvement of brain MRI automatic analysis pipelines

► i.e. Brain Segmentation pipelines:
► Deep brain mask from original MRI as ground truth (GT)
► Compare Metrics like Accuracy

▪ ACU(DeepBrainMask(Corrupted), GT)
▪ ACU(DeepBrainMask(Reconstruction), GT) 

► Train Residual-UNet with L2
► Different hyperparameter configurations
► Different architectures

► Deeper models
► Transfer Learning
► Generative model approach: 

► GAN or VAE

[1] Lian-Feng Dong et. al. Learning deep representations using convolutional auto-encoders with symmetric skip connections. 2018.
[2] Walter HL Pinaya et. al. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. 2019.



Deep CAE for reconstructing magnetic 
resonance images of the healthy brain 20

Thank you very much for your attention

Adrián Arnaiz Rodríguez
Student

Master’s in Data Science
Master’s Thesis
Medicine Area

January 2021

aarnaizr@uoc.edu

AdrianArnaiz/Brain-MRI-Autoencoder
Code licensed under MIT License

Dr. Baris Kanber
Director

Questions?

mailto:aarnaizr@uoc.edu
https://github.com/AdrianArnaiz/Brain-MRI-Autoencoder

