

Universitat Oberta de Catalunya

LOL

Deep Convolutional Autoencoders for reconstructing MRIs of the healthy brain Adrián Arnaiz-Rodríguez, Dr. Baris Kanber

Thesis of MSc Data Science in Medicine Area

Doctoral Symposium Tübingen - September 2021

Problem overview

Neuroimaging: study of morphological features of the human brain and its correlations with neurological disorders to improve medical systems

Brain MRI	Disease	Improvement of	Data	
enhancenment	Detection	Data Acquisition	Augmentation	

Image Reconstruction (information compression)

encodei

e

decoder

d

Objective: capture the representation of the underlying structure of healthy brains in a lower-dimensional space and reconstruct from this under-sampled data.

Representation Learning approach: We will not only be able to reconstruct a corrupted image, but also, we are going to learn the representation of a healthy brain MRI in the latent space.

ML Topics: Representation learning, dimensionality reduction, Normative model, information compression, latent spaces...

Dataset and preprocessing

IXI BRAIN T1-Weighted Dataset from Imperial College of London ► 584 3D MRI volumes → Nifti Format → 86794 Brain raw Sagittal 2D images

Relevant slices selection

Brain is information: Not every slice has relevant information. Many non-optimal approaches to select relevant 2D images: only middle slice, fixed range, non-0 pixels, mean intensity...

Our approach: DeepBrain [8] \rightarrow Pretrained CNN for brain segmentation

- Return mask of probabilities of each pixel belonging to brain
- Low-Threshold: 5% of brain pixels \rightarrow Final relevant slices: 59278

Convolutional AutoEncoder

- Train with disease-free neuroimaging data
- This autoencoder, would define a normal range for the neuroanatomical variability for the illness absence
- It learns the brain structure representation
- Once trained, it encodes an MRI and reconstructs it without corruptions such a noise, artifacts or injuries

SoTA

Architectures	MRI Preprocessing	Applications
Residual Networks • $F(x) = H(x) - x$ \checkmark Less complexity by learning	Intensity Normalization Downsampling Data Augmentation	 FastMRI, 2020 [7] FAIR, New York University Accelerate scan process generating MRI from under-sampled data.
 residuals Skip Connection CAEs Encoder to decoder connections Better low-detail reconstruction U-Net and V-Net 3D convolutional "AE" networks Symmetric skip connections V-NET adds RES building blocks 	<section-header>Profile and relevant slice selectionProfile SelectionNon-isotropic MRI Relevant Slice SelectionSlices with some amount of brainMiddle Slice [3]Fixed Range</section-header>	 BRATS: Myronenko, 2018 [1] ResVAE to regularize residual brain tumor segmentation network. BRATS: T. Estienne et. al., 2020 [6] V-NET AE for tumor segmentation C. Bermudez et. Al., 2018 [3] J. Manjón et. al., 2020 [2] UNet based lesson inpainting W. Pinaya et. al., 2019 [5] Unsupervised anomaly detection

Data Augmentation and split

Critical for reconstruction learning: adding variability to input MRIs to enforce the actual brain structure learning

Transformations: Dropout pixels, Gaussian Noise, Gaussian Blur, Blank-out Region (random levels)

Data i.i.d between splits: [71.8-13.8-8.1]% data split made straight from volumes: every image from one volume in the same split. Stratified by age, sex and ethnic.

Architectures

Decoder skip-con building block

Decoder upsampling building block

Shanow RES lun-pre	MDE	INO	1.000-04	1.016-04	0.196-03	30.0
Skip connection CAE	MSE	Yes	2.69e-04	2.25e-04	1.65e-02	36.8
Skip connection CAE	MSE	No	3.10e-04	2.99e-04	9.36e-03	35.7
Myronenko CAE	MSE	No	3.38e-04	3.27e-04	1.57e-02	35.1
Shallow RES full-pre	MSE	Yes	3.72e-04	3.24e-04	1.14e-02	35.2
Residual U-NET	DSSIM	No	1.50e-03	7.49e-05	$\mathbf{1.44e}\textbf{-03}$	41.8
Shallow RES full-pre	DSSIM	Yes	4.42e-03	2.34e-04	3.70e-03	36.7
Shallow RES full-pre	DSSIM	No	4.19e-03	2.88e-04	4.14e-03	35.9
Myronenko CAE	DSSIM	No	4.39e-03	6.69e-04	4.31e-03	32.1
Skip connection CAE	DSSIM	Yes	4.82e-03	4.08e-04	4.38e-03	34.2
Skip connection CAE	DSSIM	No	4.90e-03	4.57e-04	4.71e-03	33.7

- All methods are outstanding reconstructing Gaussian Residual U-Net outperforms all methods for both loss noise and fixing image blur
 - Dropped-out pixels are excellent reconstructed by every model but Shallow-Residual ones, which left some little noisy pixels
 - Blanked-out regions are better reconstructed by DSSIM models, specifically Res-UNET and Shallow-Residual

AdrianArnaiz/Brain-MRI-Autoencoder

Slides, oficial report and PwC links on Github

Presented in January 2021 at Universitat Oberta de Catalunya

functions Qualitatively and Quantitatively

and shape of the brain

decreases MSE-loss ones

DSSIM loss models reconstruct better the structure

L2 regularization enhance DSSIM-loss models, but

ELLIS Doctoral Symposium September 2021

