

Fairness in ML

A general introduction about Fairness in Algorithmic ML

Adrián Arnaiz-Rodríguez 1y PhD Student ELLIS Alicante Universidad de Alicante 17 January 2022

European Union European Regional Development Fund

> Introduction to Algorithmic Fairness

- > Bias
- Fairness definitions
- > Limitations in definitions
- > Imposing Fairness
- > Current prominent approaches
- > Datasets
- > Libraries
- > History and conceptual concerns
- > General conclusions

Algorithmic bias problem and fairness at a glance

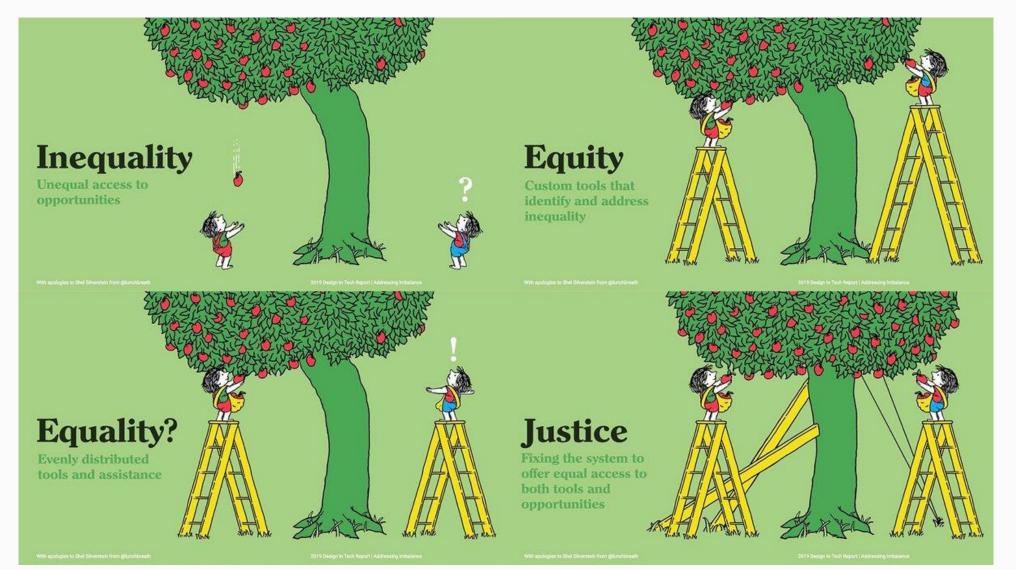
ML is used for critical decision making

How bias appears in society:

- Sources of bias
- Examples of bias

Challenges of Al

- Uncover bias/unfairness
- Measure bias (definitions Fairness)
- Mitigate bias
- Real world applications


How do we formulate the bias-fairness problem in every problem set up? How do we detect the bias and how to solve it? How could we define and measure bias or fairness? Which are the ethical principles that follows each definition of bias and fairness? Which are the implications in the real-world problems and, specifically in our own value system?

What is fairness for you?

Justice, equality and equity

Introduction to Algorithmic Fairness

ML for critical decision making

- ML models are becoming the main tools for addressing complex societal problems in many consequential areas of our lives
 - Education
 - Justice: pretrial and detention
 - Security
 - Health
 - Child Maltreatment screening
 - Social Services
 - Hiring

...

- Finance
- Advertising
- Each one with its own objectives
 - Reduce cost
 - Maximize social benefit

Privacy
Transparency
Accountability
Eliability
Autonomy
Fairness

Ethical implications Many of these concepts do not have universally accepted definitions

Harms from Algorithmic Decision-Making

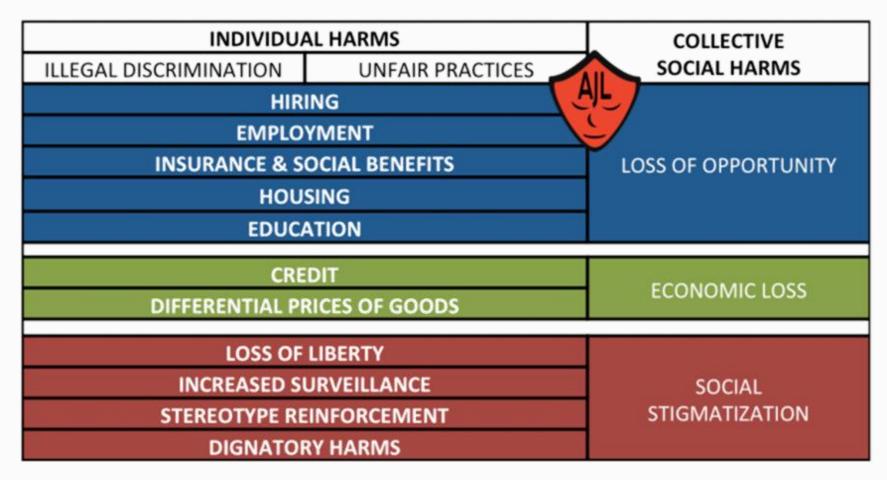
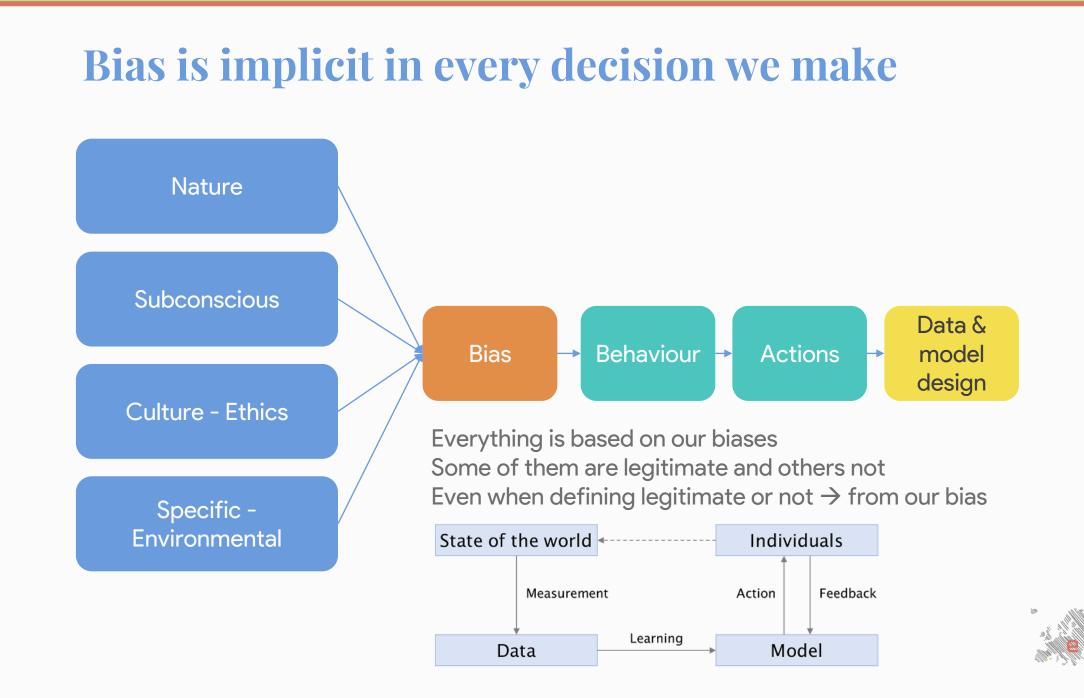


Chart Contents Courtesy of Megan Smith, Former CTO of the United States



Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In FAccT. PMLR. http://gendershades.org/overview.html

ML for critical decision making - examples

- Finance
 - A. Byanjankar, M. Heikkilä, and J. Mezei. Predicting credit risk in peer-to-peer lending: A neural network approach. In IEEE Symposium Series on Computational Intelligence, 2015
- Hiring
 - M. Bogen and A. Rieke. Help wanted: An examination of hiring algorithms, equity, and bias. Technical report, Upturn, 2018
- Pretrial and detention
 - J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks., 2016.
- Child maltreatment screening
 - A. Chouldechova, E. Putnam-Hornstein, D. Benavides-Prado, O. Fialko, and R. Vaithianathan. A case study of algorithmassisted decision making in child maltreatment hotline screening decisions. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency, pages 134–148, 2018.
- Education
 - L. Oneto, A. Siri, G. Luria, and D. Anguita. Dropout prediction at university of genoa: a privacy preserving data driven approach. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2017.
- Social Services
 - V. Eubanks. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin's Press, 2018

Human centric ML approaches

Al systems learning moral notions

Al-based systems can **learn moral notions** or ethical behaviors and then **autonomously behave ethically**

- Comparative Moral Turing Test
- Ethical Turing Test
- Evaluate the morality of the choices of automated systems
- Branch quite unexplored: difficult connection between philosophy, ethic and technical problems
- > AGI related

How humans should design AI systems to minimize harms

Designing for **minimizing** harms derived from **poor design**, **bad applications** and **misuse** of the systems

- Algorithmic Fairness
- Privacy Preserving Data Mining Federated Learning
- Explainable AI [2] & Interpretable AI
- Adversarial Learning
- Many more examples due to many different ML methods and problems addressed

HCML Perspective: building responsible AI including <u>human relevant requirements</u>, but also considering <u>broad societal issues</u>[1]

- Safety, **Fairness**, privacy, accountability & interpretability - Ethics and legislation

Franco, D., Navarin, N., Donini, M., Anguita, D., & Oneto, L. (2022). Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 470 1. A.F. Winfield, K. Michael, J. Pitt, V. Evers, Machine ethics: the design and governance of ethical ai and autonomous systems, Proceedings of the IEEE 107 (2019) 509–517 2. D. Gunning, Explainable artificial intelligence (xai), Defense Advanced Research Projects Agency (DARPA), nd Web 2 (2).

Human centric ML approaches

Al systems learning moral notions

Al-based systems can **learn moral notions** or ethical behaviors and then **autonomously behave ethically**

- Comparative Moral Turing Test
- Ethical Turing Test
- Evaluate the morality of the choices of automated systems
- Branch quite unexplored: difficult connection between philosophy, ethic and technical problems

low humans should design Al systems to minimize harms

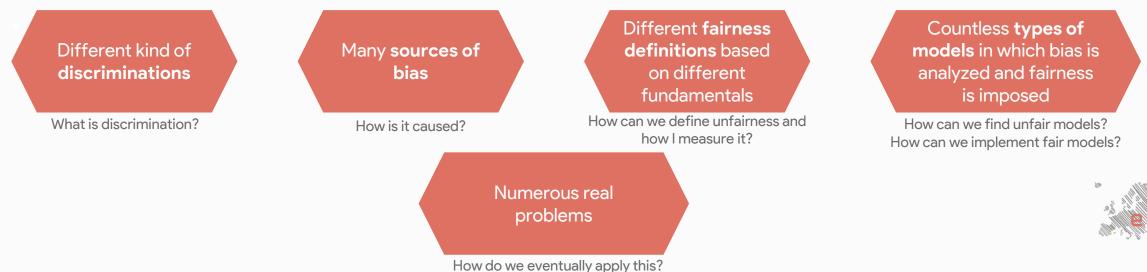
Designing for **minimizing** harms derived from **poor design**, **bad applications** and **misuse** of the systems

Algorithmic Fairness

- Privacy Preserving Data Mining Federated Learning
- Explainable AI [2] & Interpretable AI
- Adversarial Learning
- Many more examples due to many different ML methods and problems addressed

HCML Perspective: building responsible Al including <u>human relevant requirements</u>, but also considering broad societal issues [1]

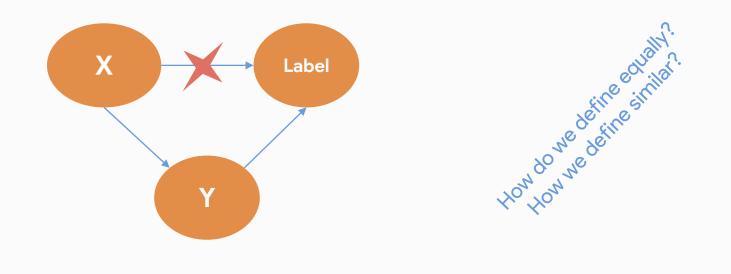
- Safety, **Fairness**, privacy, accountability & interpretability - Ethics and legislation


Franco, D., Navarin, N., Donini, M., Anguita, D., & Oneto, L. (2022). Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 470 1. A.F. Winfield, K. Michael, J. Pitt, V. Evers, Machine ethics: the design and governance of ethical ai and autonomous systems, Proceedings of the IEEE 107 (2019) 509–517 2. D. Gunning, Explainable artificial intelligence (xai), Defense Advanced Research Projects Agency (DARPA), nd Web 2 (2).

What should we consider to formally defining fairness?

- How we define different discriminations?
- What are the main sources of bias?
- How we **define fairness** and **measure it**?
- How do we <u>find bias</u> in our models?
- How we <u>mitigate bias</u> / <u>impose fairness</u> in our models?
 - What kind of different approaches are there?
- What are some examples of <u>real applications</u>?

Hints on the complexity of formally defining fairness



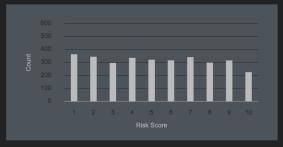
Algorithmic Fairness

- Algorithmic Fairness deals with the problem of developing Al-based systems able to treat:
 - Subgroups in the population $\underline{equally} \rightarrow \underline{Group}$ fairness
 - Similar individuals in a <u>similar</u> way → Individual Fairness

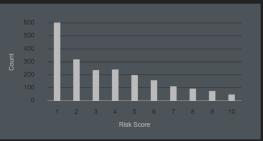
- Subgroups \rightarrow determined by means of sensitive attributes, considered for decisions
 - Gender, incomes, ethnicity, and sexual or political orientation and so on

Algorithmic Fairness

• How to enhance ML models with fairness requirements, not unethically biasing decisions



- Ensure that the outputs of a model DO NOT depend on sensitive attributes
 In a way that is considered unfair differences due to such traits cannot be reasonably justified
 F(X) = R, A ∈ X → R ⊥ A
- Many approaches: properties of the model outputs with respect to the sensitive attributes
- Relationships among all relevant variables in the data \rightarrow unfairness underlying
 - If not \rightarrow COMPAS: biased recidivism application even not using sensitive data



Black Defendants' Risk Scores

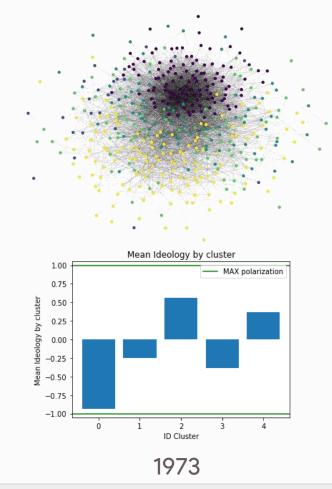
Two Drug Possession Arrests Dylan fugett Bernard Parker

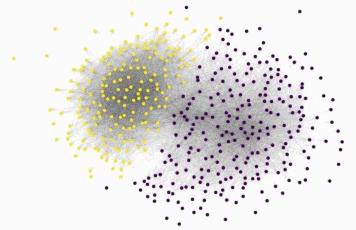
Prediction Fails Differently for Black Defendants

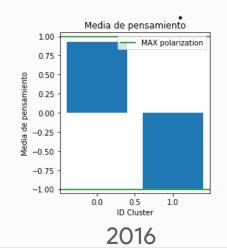
	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.


by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica


May 23, 2016


Correctional Offender Management Profiling for Alternative Sanctions - COMPAS

Not only fair decisions: echo chambers

- US House of Representatives 1973 VS 2016
- Two politicians are linked if they have supported 3+ initiatives together

Personal Project: https://twitter.com/Arnaiztech/status/1331996276045582339

Before kicking off: spoiler

- There are quite a lot different approaches to mitigating unfairness.
- No single approach is universally best \rightarrow No free lunch \otimes
- Choosing the most appropriate one will require:

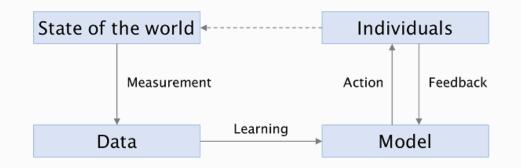
Expert judgement

Knowledge of relevant legal and compliance requirements

Context in which we are working

Takeaway: Choosing Fairness metric and method highly depends on the context

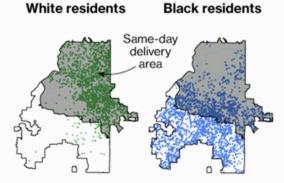
No universal fairness definition or bias mitigation / imposing fairness approach

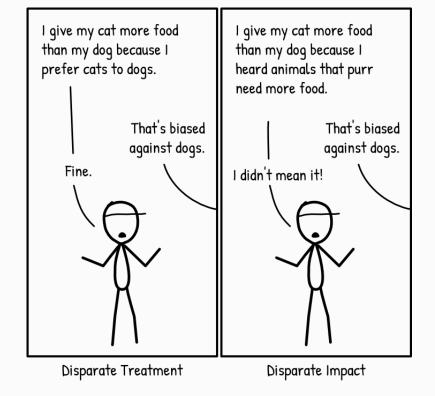


Bias

Different types

Bias & Sources


- 1. How law define bias?
 - Disparate treatment
 - Disparate impact
- 2. Bias in in ML
 - By source
 - By interaction



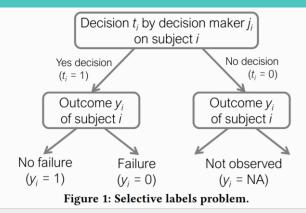
Disparate Treatment and Impact

- Anti-discrimination <u>laws</u> in various countries prohibit unfair treatment of individuals
- Legal or ethical support and formalize it quantitively
 - Disparate treatment:
 - Decisions are (partly) based on the subject's sensitive attribute
 - Explicit or intentional
 - Disparate impact:
 - Outcomes or implemented policy disproportionately hurt people with certain sensitive attribute
 - Implicit or unintentional

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671 Lim Swee Kiat. Retrieved December 2021. Machines go Wrong. <u>https://machinesgonewrong.com/fairness/</u> Ingold, D. and Soper, S., 2016. Amazon doesn't consider the race of its customers. Should It?. Bloomberg News.

Sources of Bias – Data

Bias in historical data

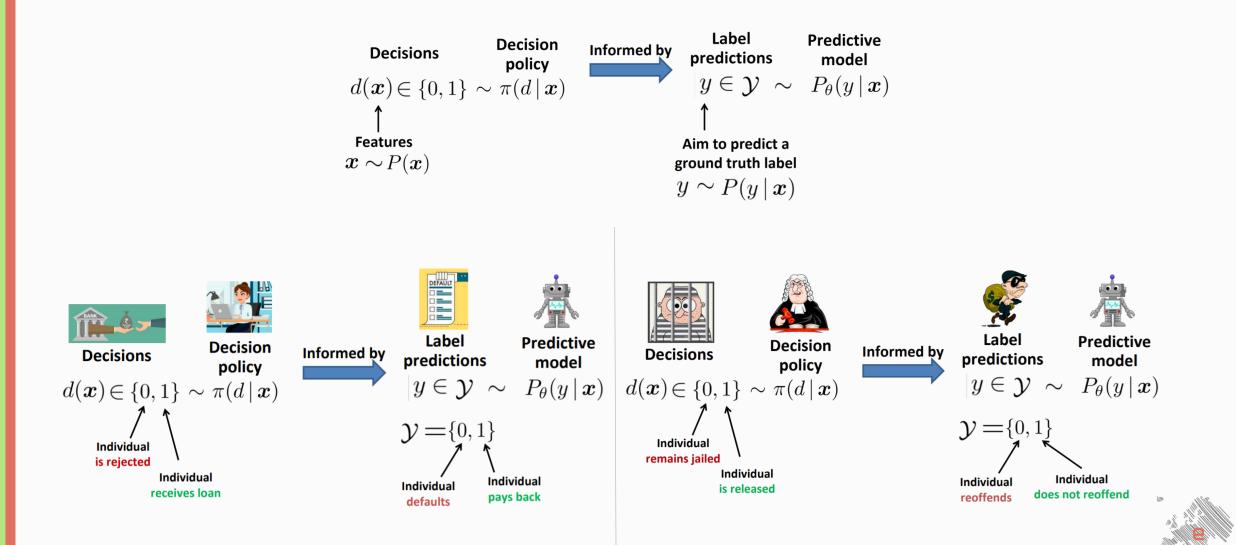

- Skewed towards groups or imbalanced limited information
 - Amazon, COMPAS or 2018-CEO-image-search
- Easy to ignore biases and surrogate variables for protected attributes
- Label imperfectly observed: Label bias
- Record of crimes comes from crimes observed by police

Bias in data collection mechanisms

- · Inherent biases in the data collection mechanisms
- Lack of representativeness
- Crowdsourcing from a technology that only uses a type of people → Autonomous car related with wealthier

Selective labels - Unobservable Outcomes

- Observed outcomes are consequence of the existing choices of the human decision-makers
 - → Label distribution based on previous policy
- Was former policy accurate or biased?
- Would they have defaulted if had they been approved for a mortgage? → Counterfactual
- Tainted samples → Decision-maker bias
- We observe loan defaults only for those who received a mortgage → we do not have any information for those who were denied
- We observe whether a defendant fails to return for their court appearance only if the human judge decides to release the defendant on bail



Bias in alternate sources of data

- "New" sources of data: worldwide web, social media, blogs
- Digital footprint variables: computer brand or type of device
 - Proxies of protected attributes
 - Socio-economic variables → surrogates for protected groups

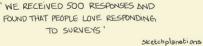
Barocas, S., & Selbst, A. D. (2016). **Big data's disparate impact**. Calif. L. Rev., 104, 671 Manuel Gomez Rodriguez et al. (2020). **Human-Centric Machine Learning Feedback loops, Human-Al Collaboration and Strategic Behavior** [<u>Link</u>]. Web Corbett-Davies & Goel. (2018). **The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning** Lakkaraju, H. et al. (2017). **The selective labels problem: Evaluating algorithmic predictions in the presence of unobservables**. 23rd SIGKDD

Examples of selective label

Manuel Gomez Rodriguez et al. (2020). Human-Centric Machine Learning Feedback loops, Human-Al Collaboration and Strategic Behavior [Link]. Web

Sources of Bias – Algorithm

- The automated nature of modern ML
 - Millions of automated data-transformations to get a tiny improvement in predictive performance
 - Don't carefully review the selected variables \rightarrow surrogate variables and proxy discrimination
- Overfitting and hyperparameter tunning can amplify biases
- Opaqueness and lack of interpretability of complex ML algorithms
 - If one can identify the input-output relationships \rightarrow easier to isolate potential algorithmic bias
- Inherent biases in programmers conveyed to the algorithm
- Unexpected decisions in traditional programming
 - Deliveroo riders affected by the ranking algorithm
 \rightarrow Reliability index


Sources of Bias – By interaction

Data to Algorithm

- Measurement Bias
- Omitted Variable Bias
- Representation Bias
- Aggregation Bias
 - E.g., Sympson paradox
- Sampling Bias
- Longitudinal Data Fallacy
- Linking Bias
- Proxie

- User to Data
 - Historical Bias
 - Population Bias
 - Self-selection Bias
 - Social Bias
 - Behavioral Bias
 - Survivorship bias
 - Temporal Bias
 - Content production bias

Algorithm to User

Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35 Ricardo Baeza-Yates. 2018. Bias on the web. Commun. ACM 61. 6

P(S=s|A=a) = P(S=s|A=b)

Fairness definitios and metrics

Several notions of fairness already exist in the literature

Recap: Algorithmic Fairness

• Algorithmic Fairness deals with the problem of developing Al-based systems able to treat:

- Subgroups in the population $\underline{equally} \rightarrow \underline{Group}$ fairness
- Similar individuals in a similar way \rightarrow Individual Fairness
- Other newer approaches

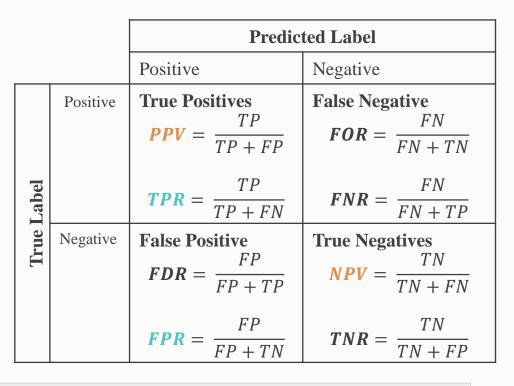
- Subgroups \rightarrow determined by means of sensitive attributes, considered for decisions
 - Gender, incomes, ethnicity, and sexual or political orientation and so on
- Ensure that the outputs of a model DO NOT depend on sensitive attributes
 - In a way that is considered unfair differences due to such traits cannot be reasonably justified

$$F(X) = R, \ A \in X \xrightarrow{} R \perp A$$

Many approaches: properties of the model outputs with respect to the sensitive attributes

How do we define equally? How we define similar?

Decision Rules: Classification


- Each individual has a set of features:
 - $x_i \in \mathbb{R}^p$
- x can be partitioned into protected and unprotected features:
 - $x = (x_u, x_p)$
 - Set of protected features: $A \in X \rightarrow$ different A values leads to different protected groups
- Target of prediction
 - $y \in \{0, 1\}$
- Training samples
 - $D = \{(x_i, y_i)\}_i^N$
- Random variables X and Y that take on values X = x and Y = y for an individual drawn randomly from the population of interest In binary classification \rightarrow probability of decision S
- **Binary classification**
 - $f: \mathbb{R}^p \to \{0, 1\}$, where $\hat{y} = f(x)$ or, in population level $\hat{Y} = f(X)$
- Risk score
 - True risk score: r(x) = Pr(Y = 1|X = x)
 - Model approximation of risk score s(x) instead of binary decision and d(x) = 1 if f(x) > t
 - R = E[Y|X]

Confusion matrix

Event	Condition	Notion P(event condition)	
$\hat{Y} = 0$	Y = 0	True Negative rate	
$\hat{Y} = 1$	Y = 0	False Positive rate	
$\hat{Y} = 0$	Y = 1	False Negative rate	
$\hat{Y} = 1$	Y = 1	True Positive rate	
Classical clf criteria			

Event	Condition	Notion P(event condition)
Y = 0	$\hat{Y} = 0$	Positive predicted value
Y = 1	$\hat{Y} = 1$	Negative predicted value

Additional clf criteria

		Predict		
		$\hat{y} = 1$	$\hat{y} = -1$	
Label	y = 1	True positive	False negative	$P(\hat{y} \neq y y = 1)$ False Negative Rate
True I	y = -1	False positive	True negative	$P(\hat{y} \neq y y = -1)$ False Positive Rate
		$P(\hat{y} \neq y \hat{y} = 1)$ False Discovery Rate	$P(\hat{y} \neq y \hat{y} = -1)$ False Omission Rate	$P(\hat{y} \neq y)$ Overall Misclass. Rate

Confusion matrix allow us to go further accuracy in error explanations related with joint distributions of (X, \hat{Y}, Y)

e

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017 Zafar, M. et al. (2017). Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. 26th WWW. Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE.

More confusion matrix measures

 $Pr(\hat{Y} = y | Y = y)$ $Pr(Y = y | \hat{Y} = y)$

		Predicted condition Total population = P + N Positive (PP) Negative (PN)			
	Total population = P + N			Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold (PT) = $\frac{\sqrt{TPR \times FPR} - FPR}{TPR - FPR}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power = $\frac{TP}{P}$ = 1 - FNR	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1 – TPR
Actual c	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1 - FPR
	$\frac{Prevalence}{P + N}$	Positive predictive value (PPV), precision = TP/PP = 1 - FDR	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 - NPV	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$
	Accuracy (ACC) = $\frac{TP + TN}{P + N}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 - PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = √PPV×TPR	Matthews correlation coefficient (MCC) = √TPR×TNR×PPV×NPV - √FNR×FPR×FOR×FDR	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

- Confusion matrix allow us to go further accuracy in error explanations related with joint distributions of (X, \hat{Y}, Y)
- However, it may seem quite unmanageable to try all possible combinations
- How do we leverage all this measures for fairness? → Add sensitive attribute to conditional probabilities

Group fairness: main definitions

A $\in \{a, b\}$ and $\hat{Y} = d$ Predicted Outcome $(\hat{Y}) \rightarrow A \perp S$

Demographic parity [1] \rightarrow A \perp S (independence) • P(d=1|A=a) = P(d=1|A=b)

Predicted (\hat{Y}) and Actual Outcomes (d)

- Predictive parity [2] Same $PPV \rightarrow A \perp Y \mid S$ (sufficiency) P(Y=1|d=1, A=a) = P(Y=1|d=1, A=b)
- Predictive equality Same FPR [TNR] P(d=1|Y=0, A=a) = P(d=1|Y=0, A=b)
- **Equal opportunity** Same FNR [TPR] P(d=0 | Y=1, A=a) = P(d=0 | Y=1, A=b)
- Equalized odds [3] same TPR and FPR \rightarrow A \perp S Y (separation) • $P(d=1 | Y=i, A=a) = P(d=1 | Y=i, A=b), \forall i \in \{0, 1\}$
- Conditional use accuracy equality same accuracy for G $P(Y=1 | d=1, A=a) = P(Y=1 | d=1, A=b) \land$ P(Y=0 | d=0, A=a) = P(Y=0 | d=0, A=b)
- Overall accuracy equality general accuracy P(d=Y, A=a) = P(d=Y, A=b).
- Treatment equality same ratio of errors. (FN/FP)f=(FN/FP)m.

Predicted Probabilities (S) and Actual Outcome (d) \rightarrow A \perp Y | S

- Calibration predictive parity but with probabilities $\rightarrow A \perp Y \mid S$ $P(Y=1 | S=s, A=a) = P(Y=1 | S=s, A=b), \forall s \in [0, 1]$
- Well calibration

 $P(Y=1 | S=s, A=a) = P(Y=1 | S=s, A=b) = s, \forall s \in [0, 1]$

 Balance for positive class - equal average predicted S for actual positives

E(S|Y=1, A=a) = E(S|Y=1, A=b)

Balance for negative class - same average predicted S for actual • negatives

E(S|Y=0, A=a) = E(S|Y=0, A=b)

ML model should behave equally, or at least similarly, no matter whether it is applied to one subgroup in the population or to another one

> Example of incompatibility If different base rate $P(Y=1|A=a) \neq P(Y=1|A=b)$ and satisfies predictive parity \rightarrow Cannot satisfy Equalized odds

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017 Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 jeee/acm fairware, IEEE. [1] Cynthia Dwork, et al. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference [2] Alexandra Chouldechova. 2016. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data. [3] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of Opportunity in Supervised Learning. In Advances in Neural Information Processing Systems

Considering a binary protected attribute

Definition clarification: Formal criteria

P(d=[0,1] | Y=[0,1]) AND P(Y=[0,1] | d=[0,1])

P(D=d | Y=y, A=a)=P(D=d | Y=y, A=b)

$D \setminus Y$	Ο	1
0	Predictive equality	Equal opportunity
1	Predictive equality Equal odds	Equal opportunity Equal odds

Group fairness and conditional statistical parity

$P(Y=y \mid D=d, A=a)=P(Y=y \mid D=d, A=b)$

$Y \setminus D$	Ο	1
0	Conditional use acc	Predictive parity
1		Predictive parity conditional use acc

Overrall accuracy

Definition clarification: Formal criteria

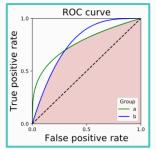
"Many fairness criteria have been proposed over the years, each aiming to formalize different desiderata. We'll start by jumping directly into the formal definitions of three representative fairness criteria that relate to many of the proposals that have been made." (Hardt et al., Fairness in Machine Learning book, 2019)

P(S A)	P(S Y,A)	P(Y S,A)
Independence	Separation	Sufficiency
S⊥A	S⊥A Y	A⊥Y S

Demographic parity

P(d=1|A=a) = P(d=1|A=b)

Positive Predicted Ratio Equal acceptance rate


Equalized odds

 $P(d=1|Y=i, A=a) = P(d=1|Y=i, A=b), i \in 0, 1$ P(Y=1|d=1, A=a) = P(Y=1|d=1, A=b)

Equal opportunity

P(d=0 | Y=1, A=a) = P(d=0 | Y=1, A=b)

TPR - FPR Equal error rates

Calibration

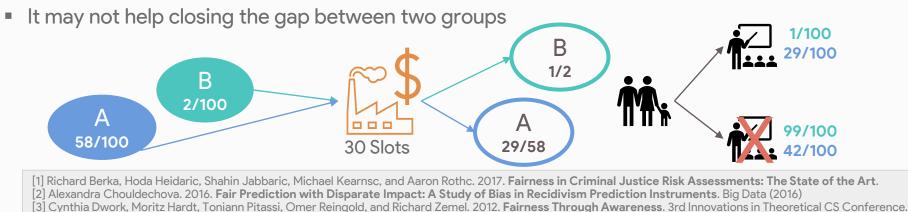
Predictive Parity

P(Y=1 | S=s>t, A=a)= P(Y=1 | S=s>t, A=b)∀ t

PPV - NPV Calibration by group

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017

Definition clarification: Formal criteria


List of demographic fairness criteria				
Name	Closest relative	Note	Reference	
Statistical parity	Independence	Equivalent	Dwork et al. (2011)	
Group fairness	Independence	Equivalent		
Demographic parity	Independence	Equivalent		
Conditional statistical parity	Independence	Relaxation	Corbett-Davies et al. (2017)	
Darlington criterion (4)	Independence	Equivalent	Darlington (1971)	
Equal opportunity	Separation	Relaxation	Hardt, Price, Srebro (2016)	
Equalized odds	Separation	Equivalent	Hardt, Price, Srebro (2016)	
Conditional procedure accuracy	Separation	Equivalent	Berk et al. (2017)	
Avoiding disparate mistreatment	Separation	Equivalent	Zafar et al. (2017)	
Balance for the negative class	Separation	Relaxation	Kleinberg, Mullainathan, Raghavan (2016)	
Balance for the positive class	Separation	Relaxation	Kleinberg, Mullainathan, Raghavan (2016)	
Predictive equality	Separation	Relaxation	Chouldechova (2016)	
Equalized correlations	Separation	Relaxation	Woodworth (2017)	
Darlington criterion (3)	Separation	Relaxation	Darlington (1971)	
Cleary model	Sufficiency	Equivalent	Cleary (1966)	
Conditional use accuracy	Sufficiency	Equivalent	Berk et al. (2017)	
Predictive parity	Sufficiency	Relaxation	Chouldechova (2016)	
Calibration within groups	Sufficiency	Equivalent	Chouldechova (2016)	
Darlington criterion (1), (2)	Sufficiency	Relaxation	Darlington (1971)	

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017

Group fairness gaps

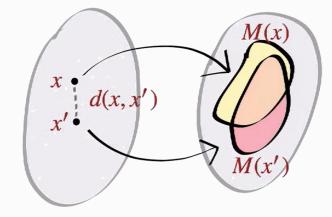
- Proved that statistical definitions are insufficient [1, 2, 3, 4]
- Moreover, most valuable statistical metrics assume availability of actual, verified outcomes.
 - Problems with Selective label bias
- Similar individuals may not be treated equally for achieving measures of group fairness
- Demographic Parity [Independence]
 - Ignores any possible correlation between Y and A
 - E.g., Perfect predictor (S=Y) is not considered fair when base rates differ (i.e., P[Y=1 | A=a] ≠ P[Y=1 | A=b])
 - laziness: if we hire the qualified from one group and random people from the other group, we can still achieve demographic parity.
- Equalized Odds Predictive Parity [separation and sufficiency]

[4] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determination of Risk Scores. In ITCS

Individual Fairness

- Group Fairness → Similar individuals could not be treated equally due to calibrations across groups to achieve group fairness measures
- Individual Fairness \rightarrow treating similar individuals similarly
 - Difference between individuals similar to difference in predictions
 - More fine-grained than any group-notion fairness: it imposes restriction on for each pair of *i*.

Our Dataset: $D = \{(x_i, y_i)\}_i^N$


Distance between x_i pairs: $k: V \times V \rightarrow R$.

Metric Learning

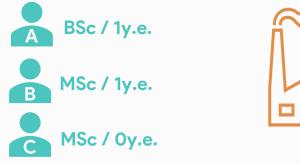
Mapping from x_i to probability distribution over outcomes $M: V \rightarrow \alpha A$

Distance between distributions of outputs **D**

Individual fairness $D(M(x), M(y)) = \langle k(x, y) \rangle$

Representation Learning

• ? How to define appropriate distance metrics for the specific problem and application?


Graph Theory

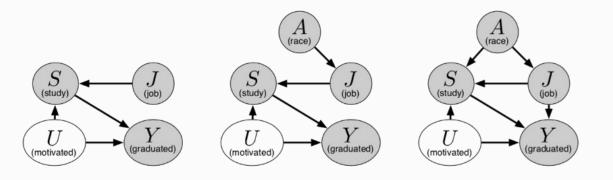
Dwork, C., et al.2012. Fairness through awareness. Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214-226 Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE.

Individual Fairness flaws

- Big expertise to establish a distance metric between individuals.
 - Metrics can still be implicit biased
- Testing definitions relies on availability of "similar" individuals
 - Search space very large \rightarrow e.g., the global population.
 - More work to narrow down the search space without impeding the accuracy
- Distance between data does not only depends on pairwise distances
 → Relationships among every all the data and topology (cliques or communities on graphs)
- Very difficult to find the proper metric (both *d* and *M*)
 - Specifically, $M \rightarrow$ unseen labels \rightarrow Selective Labels / unobserved variables / substitutes labels

Is individual A closer to B than C? How much? \rightarrow very metric dependent d

Is A closer to B than C regarding their predicted performance? \rightarrow We don't have real ground truth \rightarrow Selective labels \rightarrow Very metric dependent M


Dwork, C., et al.2012. **Fairness through awareness.** Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214-226 Kim, M. P., Reingold, O., & Rothblum, G. N. (2018). **Fairness through computationally-bounded awareness.** NIPS 2018

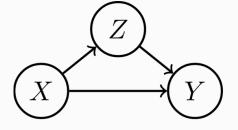
Graph Theory Representation Learning Semi/Self-Supervised Learning

Counterfactual fairness

- Group
 - Observational fairness criteria
 - Cannot find the cause of the unfairness

- Individual
 - Limitation of finding the proper metric.
- <u>Causality</u> → Explaining the impact of bias via a <u>causal graph</u>
 - Replacing A, other correlated features with it will also be influenced

<u>Causal graphs</u>: Acyclic graphs - nodes representing attributes - edges representing relationships


- Ideal idea? hard to reach a consensus in terms of
 - what the causal graph should look like?
 - which features to use even if we have such a graph?

M.J. Kusner, J. Loftus, C. Russell and R. Silva, **Counterfactual fairness**, In Neural Information Processing Systems, (2017) Barocas, S., Hardt, M., & Narayanan, A. (2017). **Fairness in machine learning**. Nips tutorial, 1, 2017 Shira Mitchell. 2018. **Reflection on guantitative fairness**. Web Book

Counterfactual fairness

- Counterfactual → "Would I have been hired if I were non-black?" "Would I have avoided the traffic jam had I taken a different route this morning?"
 - Decision does not depend on protected attribute
- The counterfactual $Y_{\{X:=1,Z:=Z_{X:=0}\}}$ is the value that Y would obtain had X been set to 1 and had Z been set to the value Z would've assumed had X been set to 0
- Fair Causal graph \rightarrow if Y don't depend on A, i.e., no A-Y way
 - Make decision only using non-descendants of A in the causal graph

- Difficult task of agreeing on which graph to build and validating it
- Impossible to test an existing classifier against **strict** causal definitions of fairness
- What should we do when not we are not able to built neither validate a causal graph?
 - Counterfactual discrimination criteria \rightarrow normative fairness criteria

Counterfactual fairness

- Notation of d(w), d(m) be the decision if the individual had been woman or men
- Individual Counterfactual Fairness

 $d_i(w) = d_i(m)$ for individual *i* and every other attribute remaining the same, i.e., $P(\widehat{Y}_{\{A \leftarrow a\}}(U) = y | X = x, A = a) = P(\widehat{Y}_{A \leftarrow b}(U) = y | X = x, A = a)$

- negative answer to "would the decision have been different if I were not black?"
- Counterfactual Demographic Parity

 E[d(w)] = E[d(m)] i.e.,
 E[Ŷ | X = x, A = a] = E[Ŷ | X = x, A = b]∀X and ∀ (a, b)

Related with Conditional Demographic Parity P(d = 1 | L = l, A = a) = P(d = 1 | L = l, A = b)which means $\hat{Y} \perp A \mid X$

- negative answer to "would the rates of hiring be different if everyone were black?"
- Conditional Counterfactual Parity

 $E[d(w) \mid X] = E[d(m) \mid X]$

- *"would the rates of hiring be different if everyone were black?"* BUT stratified by some factors
- The easiest way to satisfy counterfactual demographic parity is : prediction only use non-descendants of A in the causal graph

Counterfactual in real world

"Race plays a significant role in admissions decisions. Consider the example of an Asian-American applicant who is male, is not disadvantaged, and has other characteristics that result in a 25% chance of admission. Simply changing the race of the applicant to white— and leaving all his other characteristics the same—would increase his chance of admission to 36%. Changing his race to Hispanic would increase his chance of admission to 77%. Changing his race to African-American would increase his chance of admission to 95%".

(150 Plaintiff's expert report of Peter S. Arcidiacono, Professor of Economics at Duke University)

- Logistic regression model against Harvard's past admissions decisions
- Conditional statistical parity is not satisfied
 P(d=1 | L=I, A=a) = P(d=1 | L=I, A=a)

Fairness measurement in benchmarking dataset

• So, is the classifier fair? \rightarrow Logistic regression on German Credit Dataset

	Definition	Paper	Citation #	Result
3.1.1	Group fairness or statistical parity	[12]	208	×
3.1.2	Conditional statistical parity	[11]	29	\checkmark
3.2.1	Predictive parity	[10]	57	\checkmark
3.2.2	False positive error rate balance	[10]	57	×
3.2.3	False negative error rate balance	[10]	57	\checkmark
3.2.4	Equalised odds	[14]	106	×
3.2.5	Conditional use accuracy equality	[8]	18	×
3.2.6	Overall accuracy equality	[8]	18	\checkmark
3.2.7	Treatment equality	[8]	18	×
3.3.1	Test-fairness or calibration	[10]	57	¥
3.3.2	Well calibration	[16]	81	¥
3.3.3	Balance for positive class	[16]	81	\checkmark
3.3.4	Balance for negative class	[16]	81	×
4.1	Causal discrimination	[13]	1	×
4.2	Fairness through unawareness	[17]	14	\checkmark
4.3	Fairness through awareness	[12]	208	×
5.1	Counterfactual fairness	[17]	14	-

- Depends on the notion of fairness one wants to adopt.
 - More work is needed to clarify which definitions are appropriate to each particular situation

Context matters

German Credit Dataset. M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics. uci.edu/m Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE. I

Summary of metrics

Group Fairness		Table A synthetic review of most of			Table 1 (Continue	d)	
Croup r dirriess		Notion	Abbreviation	First Appeared	Notion	Abbreviation	First Appeared
Independence, separation,Confusion matrix-related	sufficiency	a-Protection Indirect Discriminatory Measure Decision Policy Discrimination Prediction Dependency Dataset Discrimination Discrimination Score	α-P ELB DPD PredD DD DS	[159] [72] [131] [23] [97] [22]	Group Fairness in Expectation Prejudice Index Fair-Factorization Resilience to Random Bias Normalised Discounted Difference	GFE PI FF RRB rND	[59] [105] [106] [58] [192]
 Counterfactual parity 	Metric #1,284.	Calders-Verwer Score Statistical Parity Mean Difference Area Under ROC Curve Disparate Impact e-Fairness	CVS SP MD AUC DI e-F	[22, 105] [50] [24] [24] [56] [56]	Normalised Discounted Ratio Normalised Discounted KL-divergence Explanatory Conditional Discrimination Expected Conditional Statistical Parity	rRD rKL ECD ECSP IPD	[192] [192] [210] [37] [108]
 Individual Fairness Metrics Individual counterfactual 	Okay, the True Positives divided by the False Positives, multiplied by the total number of Negative Predictions, plus the temperature of the room, multiplied by the negative exponential of the number of words in this sentence, should be the same for all sensitive groups. What are we	er values: ry-Neutrality Discrimination Correlation Indicator Demographic Parity Equal Opportunity Equal Odds Fair Prediction Rule Indifference Total Causal Effect Cross-Pair Group Fairness Hibert-Schmidt Empirical Cross-Covariance Expected Statistical Parity Expected Statistical Parity Expected Predictive Equality Calibration Balanced Loss False Positive Subgroup Fairness Proxy Discrimination Proxy Discrimination in Expectetion	PN DCI DP EOp EOd FairPR Indiff TCE CPGF HSIC ESP EPE Calib BL PPSF PDE	[50] [60] [75] [76] [76] [76] [124] [206] [14] [160] [37] [37] [37] [37] [51] [107] [108]	Individual Proxy Discrimination Disparits Amplification k-Neighbours Difference Fairness Lipschitz Property Cross-Pair Individual Fairness Decision Boundary Covariance Random Bias Individual Fairness Inconsistency Score (α, γ)-Approximately Metric-Fair Constant Relative Risk Aversion Rawlsian Equal Opportunity Egalitarion Equal Opportunity Generalised Entropy Index Counterfactual Fairness	(DispT) DA k-ND FLP CPIF DBC RBIF IS $(\alpha, \gamma)-AMF$ CRRA R-EOP c-EOP GEI CF	[108] [197] [78] [126] [14] [198] [57] [168] [196] [81] [82] [82] [82] [179] [117]
 Counterfactual Conceptually Applied 	measuring again? Fairness. Right.	P%-Rule Normalised Disparate Impact a-Discrimination Value Unfairness Underestimation Unfairness Underestimation Unfairness Overestimation Unfairness Preferred Impact Preferred Impact Preferred Impact Preferred Infatterence Squared Difference Balance Relaxed Equal Odds with Calibration Path Specific Effect Natural Direct Effect	P-R NDI a-D ValU UeU OeU PrefI PrefI DM AVD SD Bal REOC PSE NDE	(113) (137) (189) (194) (194) (194) (194) (199) (197) (13) (13) (13) (28) (163) (143)	Counterfactual Fairness c, δ-Approximate Counterfactual Fairness Counterfactual Indirect Effect Counterfactual Spurious Effect Chebyshev Demographic Parity Maximum Mean Discrepancy Fairness Ramp-Constraint δ-fairness Impartiality Score Formal Equality of Opportunity Foll Substantive Equality of Opportunity Log-Linear Interaction Markov Decision Fairness Approximate-Choice Markov Decision Fairness	€. δ-ACF CF-DE CF-IE CF-SE CDP MMD FRC δ-F IS FEO F-SEO LLI MDF α-CF	[117] [204] [204] [204] [207] [68] [65] [96] [94] [94] [94] [190] [88] [88]
• Many more		Mean Difference Discrimination Score k-way Discrimination Score Maximum Discrimination Discrimination In Prediction Loss-Averse Statistical Parity Loss-Averse Equal Opportunity Difference of Equal Opportunity Hirschfeld-Gebelein-Rényi Coefficient of Determination Difference of Equal Opportunity Difference of Equal Opportunity Difference of Equal Odds Subgroup Risk Strong Demographic Parity Strong Demographic Parity	MDDS k-DS MaxD DiscrP L-ASP DEO HGR Cod R ² DEOp DEOd SR SDP SPDD	(168) (168) (208) (5) (5) (33) (134) (114) (151) (151) (151) (188) (91) (91)	Approximate-Action Markov Decision Fairness Approximate-Action Markov Decision Fairness Indirect Influence e-Loss Fair Mutual Information Kullback-Leibler Divergence Wasserstein Distance Path Specific Counterfactual Fairness	a-CF a-AF II e-LF a-MC CC MMC e-LGF MI KL-D WD PSCF	[88] [1] [49] [109] [153] [186] [186] [201] [26]

(Continued)

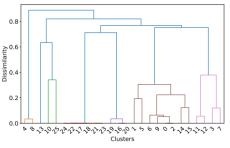
Lim Swee Kiat. Retrieved December 2021. Machines go Wrong. <u>https://machinesgonewrong.com/fairness/</u> Oneto, L. (2020). Learning fair models and representations. Intelligenza Artificiale, 14(1), 125-152.DOI 10.3233/IA-190034 Castelnovo, A., Crupi, R., Greco, G., & Regoli, D. (2021). The zoo of Fairness metrics in Machine Learning. arXiv

Metrics clarification

- **Theory**: Formal criteria aforementioned:
 - $A \perp S | X A \perp S A \perp S | Y A \perp Y | S$
- Applied: Majumder, S. et al (2021)
 - 26 classification metrics → 7 clusters
 - 4 dataset metrics → 3 clusters

RQ1: Do current fairness metrics agree with each other?

No \rightarrow 51% agreement

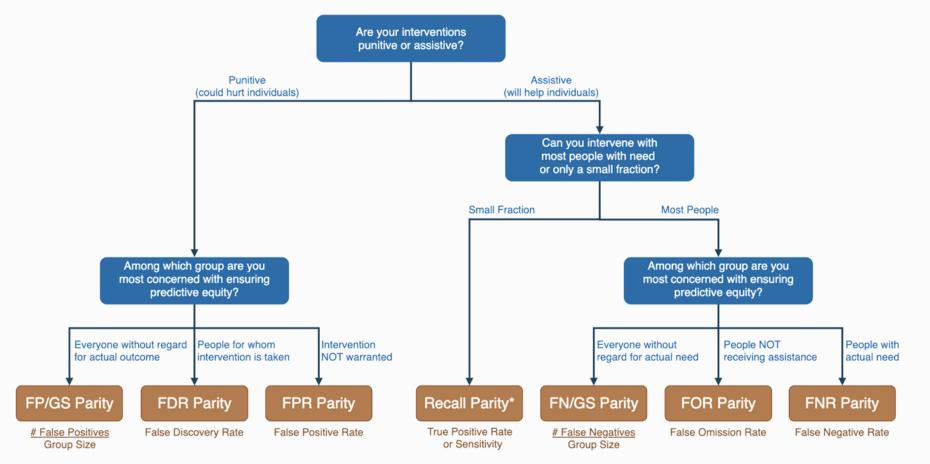

RQ2: Can we group (cluster) fairness metrics based on similarity?

Yes \rightarrow minimizing intra-cluster disagreement

RQ4: Can we achieve fairness based on all the metrics at the same time?

No. Each cluster and metric measure on thing, sometimes opposite

Again, choose depends on the context



Cluster			Metric							
Id	MID	Metrics	Adult	Compas	German	Health	Bank	Student	Titanic	Туре
0	C3	false_omission_rate_difference	Unfair	Fair	Fair	Unfair	Fair	Fair	Unfair	
0	C7	false_omission_rate_ratio	Unfair	Fair	Fair	Unfair	Fair	Unfair	Unfair	Mis-
0	C11	error_rate_difference	Unfair	Fair	Fair	Unfair	Fair	Fair	Fair	classification
0	C12	error_rate_ratio	Unfair	Fair	Fair	Unfair	Fair	Fair	Fair	classification
	-	Percentage of agreement	100%	100%	100%	100%	100%	75%	50%	
1	C10	average_abs_odds_difference	Unfair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	Differential
1	C25	differential_fairness_bias_amplification	Unfair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	Fairness
		Percentage of agreement	100%	100%	100%	100%	100%	100%	100%	Tanness
2	C16	generalized_entropy_index	Fair	Unfair	Fair	Fair	Fair	Fair	Unfair	
2	C19	theil_index	Unfair	Unfair	Fair	Unfair	Unfair	Fair	Unfair	Individual
2	C20	coefficient_of_variation	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Fairness
		Percentage of agreement	67%	100%	67%	67%	67%	67%	100%	
3	C4	false_discovery_rate_difference	Fair	Fair	Fair	Fair	Fair	Fair	Unfair	Mis-
3	C8	false_discovery_rate_ratio	Fair	Fair	Fair	Fair	Fair	Unfair	Unfair	classification
	_	Percentage of agreement	100%	100%	100%	65%	100%	50%	100%	classification
4	C0	true_positive_rate_difference	Unfair	Unfair	Fair	Unfair	Unfair	Fair	Unfair	
4	C1	false_positive_rate_difference	Fair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	
4	C2	false_negative_rate_difference	Unfair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	
4	C5	false_positive_rate_ratio	Fair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	Confusion
4	C6	false_negative_rate_ratio	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Matrix Based
4	C9	average_odds_difference	Unfair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	Group Fairness
4	C14	disparate_impact	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	
4	C15	statistical_parity_difference	Unfair	Unfair	Unfair	Unfair	Unfair	Fair	Unfair	
		Percentage of agreement	75%	100%	88%	100%	100%	75%	100%	
5	C17	between_all_groups_generalized_entropy_index	Fair	Fair	Fair	Fair	Fair	Fair	Fair	
5	C18	between_group_generalized_entropy_index	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Between
5	C21	between_group_theil_index	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Group
5	C22	between_group_coefficient_of_variation	Fair	Fair	Fair	Fair	Fair	Fair	Unfair	Individual
5	C23	between_all_groups_theil_index	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fairness
5	C24	between_all_groups_coefficient_of_variation	Fair	Fair	Fair	Fair	Fair	Fair	Unfair	Turricos
		Percentage of agreement	100%	100%	100%	100%	100%	100%	67%	
6	C13	selection_rate	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	Unfair	
		Percentage of agreement	100%	100%	100%	100%	100%	100%	100%	Intermediate Metric
P	Percentage of metrics marking dataset as unfair				34%	65%	50%	23%	77%	

Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. preprint arXiv:2110.13029.

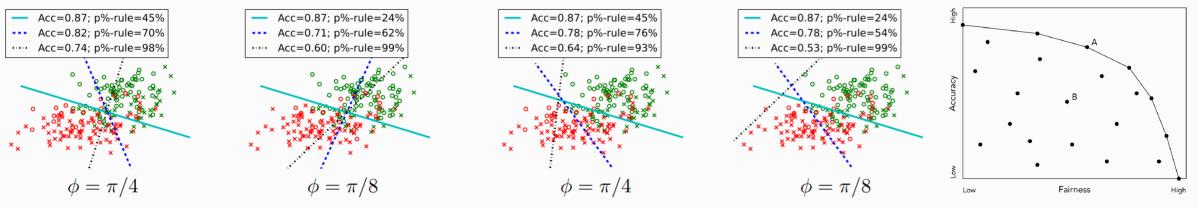
Metrics clarification

FAIRNESS TREE (Zoomed in)

Saleiro, P., et al. (2018). Aequitas: A bias and fairness audit toolkit. arXiv:1811.05577 http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/

Impossibility Theorem

Why different definitions are not compatible? Inherent Trade-off of fairness


Fairness limitations

- Accuracy VS Fairness
- Group Fairness Impossibility Theorem
- Group VS Individual

Accuracy vs Fairness Tradeoff

Impose constraints on the accuracy with fairness metrices leads to not aligned objectives Tradeoff depends on how "similar" Y and A are → e.g., if aligned, then linear penalty The more aligned, the more one will penalize the other We will have solutions in the pareto front

(a) Maximizing accuracy under fairness constraints

(b) Maximizing fairness under accuracy constraints

$$p\%rule = \min(\frac{P\{\hat{Y} = 1 \mid A = a\}}{P\{\hat{Y} = 1 \mid A = b\}}, \frac{P\{\hat{Y} = 1 \mid A = b\}}{P\{\hat{Y} = 1 \mid A = a\}}) \ge \frac{p}{100}$$

Valdivia, A., Sánchez-Monedero, J., & Casillas, J. (2021). How fair can we go in machine learning? Assessing the boundaries of accuracy and fairness. IJIS, 36(4), 1619-1643. Menon, A. K., & Williamson, R. C. (2018, January). The cost of fairness in binary classification. In Conference on Fairness, Accountability and Transparency (pp. 107-118). PMLR Zafar, M. B., Valera, I., Rogriguez, M. G., & Gummadi, K. P. (2017, April). **Fairness constraints: Mechanisms for fair classification.** In Artificial Intelligence and Statistics . PMLR.

Formal criteria's impossibility theorem

- Independence vs sufficiency DP vs PP
 - If $A \neg \bot Y \rightarrow$ either DP or PP, but NOT BOTH
- Independence vs Separation DP vs EO
 - If $Y \neg \bot A \& \& Y \neg \bot S \rightarrow$ either DP or EO, but NOT BOTH
- Separation vs sufficiency EO vs PP
 - If $P(a, s, y) > 0 \forall AxSxY$ (all events in the joint distribution of have positive probability) AND
 - If $A \neg \bot Y \rightarrow$ either EO or PP, but NOT BOTH
 - If predictor satisfy EO, PP requires equal PPV, and therefore need equal base rates → Not usually happen
 - i.e., If different base rates P(Y=1 | A=a) \neq P(Y=1 | A=b) \rightarrow either EO or PP, but NOT BOTH

Group	а	b		Group	а	b
Outcome	\$\$\$\$\$\$000	P P 00	Unequal base rates	Outcome	\$\$\$\$\$\$000	₽₽₽00 ba
Predictor	1 1 1 1 1 0 0 0	Ö Ž Š Š		Predictor	\$ \$ 6 6 6	.
					ond TNR betwe	en groups

Negative Predictive Parity violated Not possible to preserve NPV without sacrificing EO/PP

\$ \$ \$ \$

2/5

а

Group

NPV

Unequal base rates

Outcome

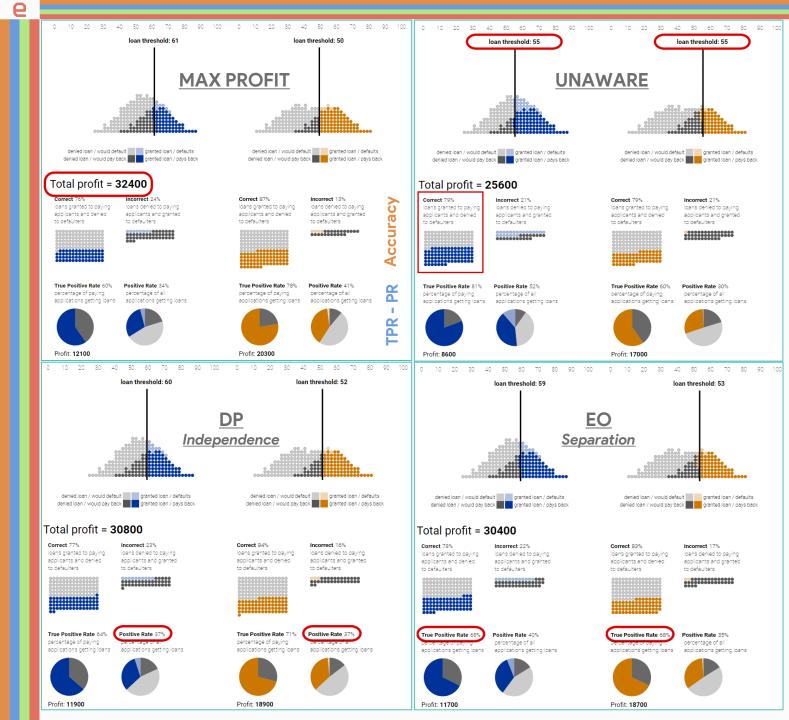
Predictor

J. Kleinberg, S. Mullainathan, M. Raghavan, Inherent trade-offs in the fair determination of risk scores, Innovations in Theoretical Computer Science Conference Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2), 153-163 Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017 SOME FAIRNESS DEFINITION CAN BE MUTUALLY EXCLUSIV

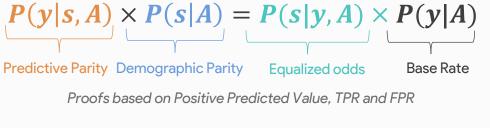
Independence	Separation	Sufficiency				
A⊥S	A⊥S Y	A⊥Y S				

¬⊥ → dependent || ⊥→ Independent Demographic Parity - DP Equalized odds - EO Predictive Parity - PP

b


\$ \$ 60

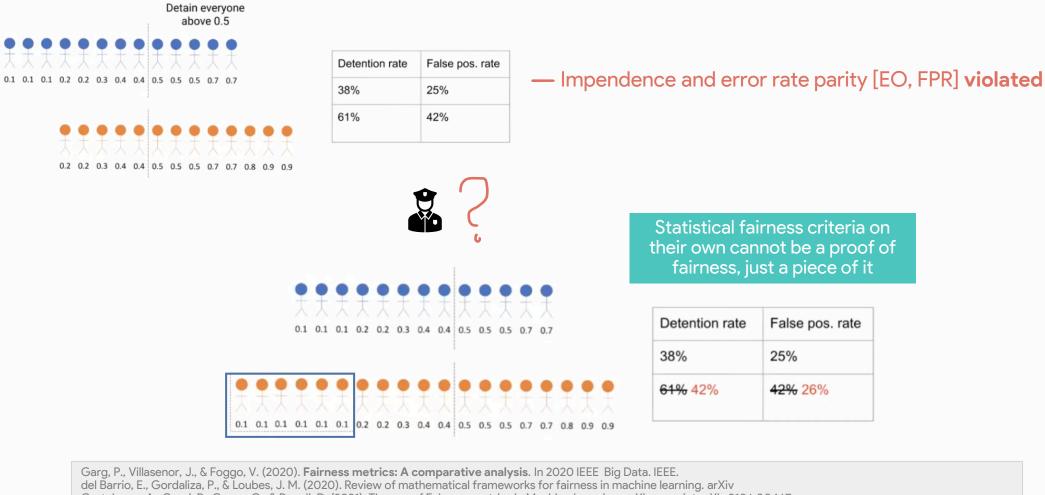
1/3


Unequal

base rates

Formal criteria's relationship

If unequal base rates && not perfect classifier \rightarrow Sufficiency implies that Error parity Fails


Loan granting: 2 groups with different base rates

- Maximize profit \rightarrow violate TPR and PR
- Unaware \rightarrow orange gets fewer loans also violate TPR and PR
- <u>Demographic Parity</u> (PR) \rightarrow Violates TPR (EO)
- Equalized odds (EO) \rightarrow Violates PR (DP)

Martin Wattenberg, Fernanda Viégas, and Moritz Hardt Attacking discrimination with smarter ML. https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Metrics not sufficient on their own

Castelnovo, A., Crupi, R., Greco, G., & Regoli, D. (2021). The zoo of Fairness metrics in Machine Learning. arXiv preprint arXiv:2106.00467

Chiappa, S., & Isaac, W. S. (2018). A causal bayesian networks viewpoint on fairness. In IFIP International Summer School on Privacy and Identity Management. Springer, Cham.Oneto, L., & Chiappa, S. (2020). Fairness in Machine Learning. ArXiv, abs/2012.15816.

Martin Wattenberg, Fernanda Viégas, and Moritz Hardt Attacking discrimination with smarter ML. <u>https://research.google.com/bigpicture/attacking-discrimination-in-ml/</u> Moritz Hardt - MLSS 2020, Tübingen. <u>https://youtu.be/lgq_S_7lf0U?t=4056</u>

http://www-student.cse.buffalo.edu/~atri/algo-and-society/support/notes/fairness/index.html

Imposing fairness

How to plug chosen fairness definition into the training on ML algorithms?

How to satisfy Fairness criteria

Pre-processing

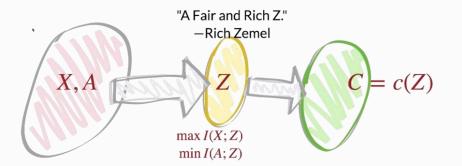
- From feature space to a **representation** → **Independence S⊥A**
- Model learned from this representation will be fair [Data processing inequality Information Theory]
- Model agnostic
- Information loss in latent space

In-processing

- Fairness constraints in the optimization process
- Powerful \rightarrow fairness during the optimization process
- Loss of generality \rightarrow each type of model and specific task uses its own regularize

Post-processing

- Taking a trained classifier \rightarrow adjust it depending on the sensitive attribute and randomness
- independence is achieved
- Works for black-box models and no re-training needed
- Useful when no access to training data, complex-no access to training pipeline
- Not that efficient due to the same reasons



							A syr	nthetic review of mos		ble 2 e papers	available in the lit	erature						
Lots of them again	Paper	Method Family	Task	Protected Attribute	Notion of Fairness	Theoretical Results	Experimental Results	Comparison Against	Code Available	Paper	Method Family	Task	Protected Attribute	Notion of Faimess	Theoretical Results	Experimental Results	Comparison Against	Code Available
Method family	[16] [164] [194] [137]	PreP, InP InP InP PreP	BC, MC, R BC BC, MC, R	B, C B, C B, C B	DP, EOp MMD ValU, AbsU, UeU, OeU SP, NDI	1	1	[76, 197]		[97] [158]	PreP PostP	BC BC	B, C B, C	DD α-P		4	1071	~
■ Pre	[149] [163]	PreP InP PostP	BC, MC BC BC	B, C B	CC REOC	***	1	[197] [76, 197]		[23] [22] [100]	PreP PreP, InP, PostP InP, PostP	BC BC BC	B, C B B	PredD DS (CVS) DS		4	[97] [22, 23, 97]	4
	[1] [25] [37]	PostP PreP InP	BC, MC BC BC	B, C, N B, C B, C	II α -P, DP ESP, ECSP, EPE	4	1	[83] [202]	~	[98] [126]	PreP PreP	BC BC, MC	B, C B, C, N	DS k-ND		4	[23, 97]	4
	[107] [80] [69]	InP InP InP	BC BC BC	B, C B, C, N B	SP, FPSF a-MC ESP, EPE	4	~	[2]	4	[210] [72] [105]	PreP PreP InP	BC BC BC	B B, C B, C	ECD ELB PI		4	[23, 98]	4
Post	[208] [4]	PreP, PostP InP	BC BC, MC	B B, C	DiscrP EOd	4	×	[76, 197]		[50] [71]	InP PreP	BC BC	B,C,N B, C	FLP, SP ELB	~			 Image: A second s
	[49] [2] [64]	PreP, InP PostP InP	BC BC MAB	B, C B, C B, C	ε−LF DP, EOd FLP	1	1	[76, 197] [76, 99]	~	[101] [99] [131]	InP PreP PreP	BC BC BC	B, C B B, C	DS DS DPD	~	4	[22, 99, 100] [22, 100]	4
• Task	[78] [109] [129]	InP PostP InP	BC, MC, R BC BC	B, C, N B, C, N B, C	DA MMC EOd	1	1		~	[73] [24]	PostP InP	BC BC, MC, R	B, C B, C B, C	α-P MD, AUC		4		~
 Binary classification 	n [128]	PreP InP	BC BC, MC	B B, C	DP, EOp, EOd DP, EOd	4	4	[52]	~	[106] [202] [102]	InP PreP, InP PreP, PostP	BC BC BC	B B B	FF SP ECD		4	[22] [97, 103]	
 Multiclassification 	[203] [133] [143]	PreP, InP PreP, InP InP	BC, MC, R BC, MC BC, MC, R	B, C B, C B, C	DP, EOd, EOp DP, EOd PSE, NDE	~	4	[16] [2, 128, 145, 198, 203]		[102] [132] [74]	PreP PreP PreP	BC BC	В, С В, С	α-P α-P		4	[23, 98] [22]	***
 Regression 	[168] [167] [196]	PostP PreP, InP InP	BC, MC, R BC BC, MC, R	B, C, N B B, C, N	MDDS, k-DS, MaxD, IS MDDS, IS (α, γ)-AMF	~	1	[97, 103, 202] [52, 103, 123, 168, 202]		[56] [123] [52]	PreP PreP PreP, InP	BC BC, MC, R BC	B B, C, N B	DI, e-F DP, MMD SP	~	4	[97, 103, 202] [202]	
	[185] [67] [63]	Prep, InP PreP PreP, InP	BC, MC, R BC BC, MC, R	B, C B B, C	DP, EOd DI MI, EOd	1	1	[56]		[52] [60] [75]	InP PreP	BC, MC, R BC	В, С, N В, С	η-N α-P	4	4	[22, 104]	× ✓
Protected attribute	[5] [39]	PostP InP	BC BC, MC	B B, C	L-ASP, L-AEOP DP, EOp	~	1		~	[125] [55] [57]	InP PreP PreP, InP	BC, MC BC BC	B, C B, C B	DCI SP, DI DP, RBIF		4	[202] [202]	4
 Binary 	[40] [81] [114]	InP InP InP	BC, MC BC, MC, R BC, MC, R	B, C B, C, N B, C, N	DP, EOp CRRA CoD	*	1		*	[76] [65]	PostP InP	BC BC	B, C B, C	EOp, EOd FRC	~	\$	[198]	~
 Categorical 	[186] [178] [82]	PreP PreP InP	BC, MC, R BC, MC, R BC, MC, R	B, C, N B, C, N B, C	MI, KL-D MI R-EOP, e-EOP	✓	1	[81]		[96] [95] [58]	InP InP PostP	BC BC BC, MC, R	B, C B, C B, C, N	δ-F δ-F RRB	4	4	[97, 100, 202]	4
 Numerical 	[179] [201] [59]	InP PreP InP, PostP	BC, MC, R BC, MC, R BC, MC, R	B, C B, C B, C	GEI WD GFE	1	4	[197]		[36] [124] [94]	PreP InP	BC, MC, R BC, MC, R BC, MC, R	B, C, N B, C, N B, C, N	FairPR FEO, F-SEO	*	4	[97, 100, 202]	
	[144] [33]	InP PostP	BC, MC, R BC	B, C B B	PSE DEO	1	1	[49, 76, 197]		[190] [206] [198]	PostP PreP InP	BC, MC BC BC	B, C B, C B, C	LLI TFE DBC		4	[56, 210] [98, 103]	4
	[86] [110] [134]	InP PostP InP	BC BC BC, MC, R	В В В, С, N	ε-LF α-MC HGR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	[13, 49]	~	[51] [14]	InP InP	BC, MC BC, MC, R	B, C B, C B	BL CPIF, CPGF	~	\$	[96, 105]	
	[147] [153] [151]	PostP PreP, InP InP	BC BC, MC, R BC	B B, C, N B, C	EOd, EOp €-LGF DEOp, DEOd	✓	1	[76] [197, 198]		[88] [93] [108]	InP PreP InP	BC BC	B, C B, C, R B, C	MDF, α-CF, α-AF FairPR	~	~		×
	[152] [188] [26]	PreP, InP InP InP	BC, MC, R BC, MC, R BC, MC, R	B, C B, C, N B, C	DP SR PSCF, MMD	1	1	[52, 128] [49]		[113] [117]	PreP, InP InP	BC, MC BC, MC, R BC, MC, R	B, C, N B, C	ProxD, PDE, IPD P-R CF	4	4	[24, 56, 202]	×
	[91] [200]	InP, PostP InP	BC BC, MC	B, C, R B, C	SDP, SPDD, WD DBC, DI, DM	1	1	[76] [37, 49, 76, 98, 103]		[171] [189] [199]	InP InP, PostP InP, PostP	BC, MC, R BC BC, MC	B, C B B, C	 ε, δ-ACF α-D PrefI, PrefT 	~	1		
	[138] [89]	PreP PostP, InPro	BC BC, MC	B B	SP, DI, FLP EOd	4	1			[197] [192]	InP InP	BC BC	B, C B	DM rND, rKL, rRD		4	[76] cs	
										[207] [13]	PreP InP PreP	BC BC	BB	CDP AVD, SD	1	4	[56, 210] [76, 197]	~
Oneto, L. (2020). Learning fair models a	nd representa	tions. Intellig	genza Artifi	ciale, 14(1), 125-152.DOI 10.	3233/	'IA-19	90034		[28] [160]	PreP PreP, InP	C BC, MC, R	в В, С, N	Bal HSIC	v	1		

e

Pre-processing: Fair Representation Learning

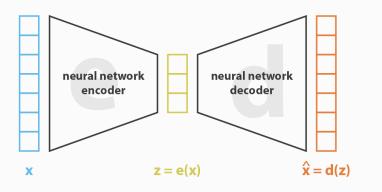
- Approaches
 - Awareness
 - Representation Learning
 - Re-weighting
 - Resampling \rightarrow Over/Under SMOTE, etc

- Z \rightarrow Latent representation
 - $\max_{Z=g(X)} I(X;Z)$
 - subject to I(A; Z) < e
 - S⊥A

 $\alpha Loss_{similarity} + \beta Loss_{fairness} + \gamma Loss_{prediction}$

- Strict approach → Optimizes only <u>Statistical Parity</u> or Individual Fairness
 - Info of Y not used
- No need to access A at test time nor Y at representation time
- If Y is used \rightarrow hybrid approach with potential better results [S \perp A|Y and Y \perp A|S]

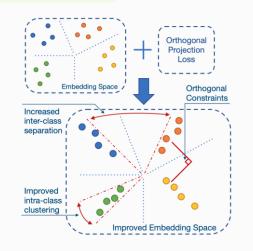
Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. 2013,. Learning fair representations. In International conference on machine learning Cynthia Dwork, et al. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference F. Kamiran and T.G.K. Calders. 2012. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems 33 $D = \{(a_i, x_i, y_i)\}_{i=1}^N$ $x_i \in R^d$ $g: R^d \to R^r \text{ i.e., } g(x_i) = z_i$ $z_i \in R^z$ $z_i \perp a_i$ $Z \perp A$


If model involved [hybrid]: f(g(X))

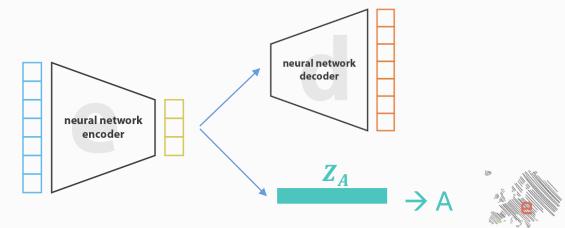
Pre-processing: Fair Representation Learning

Lots of works using NN max I(A, g(X)) while min I(A,g(X)) and may max(g(X),Y)

$$Loss_{C} = |x - x'|^{2} - \lambda Loss_{A}(z)$$


 $\alpha Loss_{similarity} + \beta Loss_{fairness} + \gamma Loss_{prediction}$

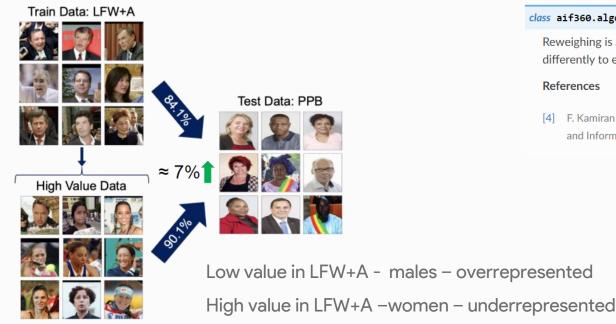
aif360.algorithms.preprocessing .LFR


class aif360.algorithms.preprocessing.LFR(*unprivileged_groups*, privileged_groups, k=5, Ax=0.01, Ay=1.0, Az=50.0, print_interval=250, verbose=0, seed=None) [source]

Learning fair representations is a pre-processing technique that finds a latent representation which encodes the data well but obfuscates information about protected attributes $^{[2]}$... rubric:: References

[2] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, "Learning Fair Representations." International Conference on Machine Learning, 2013.

$$Loss_{C} = \alpha |x - x'|^{2} + \lambda Loss_{A}(Z_{A}) + \beta L \perp$$



Bai, H.,et al.(2020). Decaug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. preprint arXiv:2012.09382 FRLTradeoffs: https://blog.ml.cmu.edu/2020/02/28/inherent-tradeoffs-in-learning-fair-representations/

Pre-processing: Reweighting

- Weight the examples (group, label) to ensure fairness in classification
- Unbalanced learning-related \rightarrow e.g., Fair-SMOTE
- Advanced example \rightarrow SHAPLEY values

Domain adaptation: gender detection

aif360.algorithms.preprocessing .Reweighing %

class aif360.algorithms.preprocessing.Reweighing(unprivileged groups, privileged groups) [source]

Reweighing is a preprocessing technique that Weights the examples in each (group, label) combination differently to ensure fairness before classification ^[4].

References

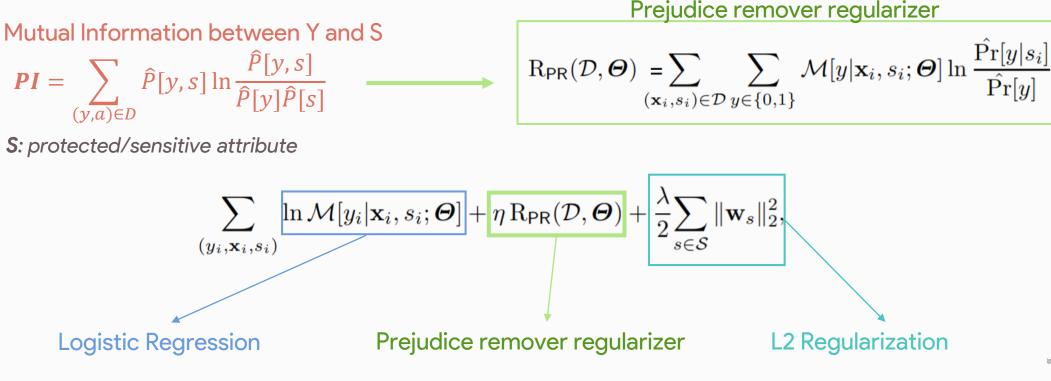
[4] F. Kamiran and T. Calders, "Data Preprocessing Techniques for Classification without Discrimination," Knowledge and Information Systems, 2012.

Ghorbani, A., & Zou, J. (2019, May). Data shapley: Equitable valuation of data for machine learning. In ICML. PMLR Joymallya Chakraborty, et al. 2021. Bias in Machine Learning Software: Why? How? What to Do?. 29th ESEC/FSE 2021. ACM

In-processing

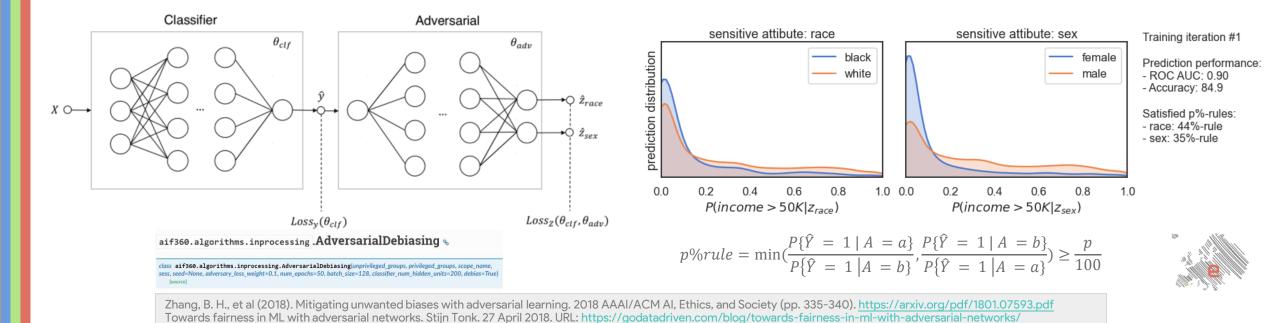
aif360.algorithms.inprocessing .PrejudiceRemover %

class aif360.algorithms.inprocessing.PrejudiceRemover(eta=1.0, sensitive_attr=", class_attr=") [source]


Prejudice remover is an in-processing technique that adds a discrimination-aware regularization term to the learning objective ^[6].

References

[6] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma, "Fairness-Aware Classifier with Prejudice Remover Regularizer," Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2012.


- Prior work: Prejudice remover (Kamishima et al., 2012)
 - Prejudice remover regularizer: Based on the degree of indirect prejudice (PI)

In-processing: Adversarial debiasing

- Make the best possible predictions while ensuring that A cannot be derived from them
 - Demographic Parity
 - Adversary gets \hat{Y}
 - Equality Of Odds
 - Adversary gets \hat{Y} and Y
 - Equality Of Opportunity
 - On a given class $y \rightarrow$ restrict adversary's training set to X where Y = y

 $\min_{\theta_{clf}} [Loss_y(\theta_{clf}) - \lambda Loss_Z(\theta_{clf}, \theta_{adv})]$

Post-processing

- Deal with output predictions of the model
 - Useful in black-box models or if we don't have access to the train pipeline → NO retraining
 - Find a proper threshold using the output for each group
 - Require A to be available in testing \rightarrow compliance risk

aif360.algorithms.postprocessing .RejectOptionClassification

Reject option classification is a postprocessing technique that gives favorable outcomes to unpriviliged groups and unfavorable outcomes to priviliged groups in a confidence band around the decision boundary with the highest uncertainty ^[10].

Nengfeng Zhou, et al.. 2021. Bias, Fairness, and Accountability with AI and ML Algorithms. arXiv:2105.06558 F. Kamiran, A. Karim, and X. Zhang, 2012 "Decision Theory for Discrimination-Aware Classification," IEEE International Conference on Data Mining G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, 2017 "On Fairness and Calibration," Conference on Neural Information Processing Systems M. Hardt, E. Price, and N. Srebro, 2016 "Equality of Opportunity in Supervised Learning," Conference on Neural Information Processing Systems

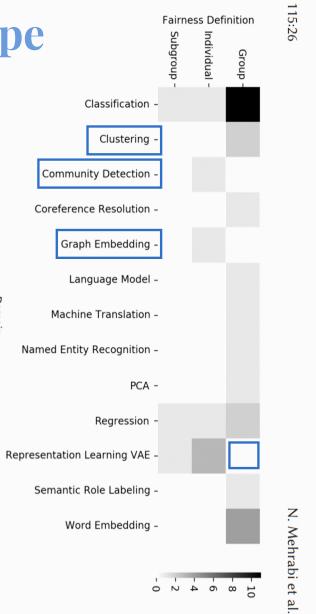
More prominent approaches

Causality

Domain-specific Images Text Graphs

Discriminatory Transfer Multitask Fairness

XAI Interpretability Game theoretical approaches


Current situation

Quick view on graphs & causality

Current landscape

Table 2. List of Papers Targeting and Talking about Bias and Fairness in Different Areas

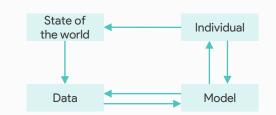
Area	Reference(s)						
Classification	[25, 49, 57, 63, 69, 73, 75, 78, 85, 102, 118, 143, 150, 151, 155]						
Regression	[1, 14]						
РСА	[133]	_					
Community detection	[101]						
Clustering	[8, 31]						
Graph embedding	[22]						
Causal inference	[82, 95, 111, 112, 123, 156, 160, 161]						
Variational auto encoders	[5, 42, 96, 108]						
Adversarial learning	[90, 152]						
Word embedding	[20, 58, 165] [23, 162]						
Coreference resolution	[130, 164]						
Language model	[21]						
Sentence embedding	[99]						
Machine translation	[52]						
Semantic role labeling	[163]						
Named Entity Recognition	[100]						

Domain

Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35

Graphs & Fairness

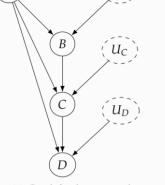
What fairness need? Defining – detecting – imposing - apply	How can Graphs help?
Capture Individual similarity	 Natural node pairwise distance Structural similarity Role similarity Graph Representation Learning (for Nodes & Edges & Graphs)
Capture Group Structure-Behavior	 Community detection Inherent data structure in graphs Structural Analysis (e.g., Laplacian)
Capture deeper relationships between data	 Node - Edge - classification Missing link prediction Message passing - Information Flow Rewiring - Changing graph structure
Different label bias problems	 Semi-Supervised Learning i.e., help with labels we cannot see
Causality	 Strong theory behind graphs GNN → SCM
Applied to social problems	 Network is the natural structure of data Also, everything can be modeled as a graph
XAI	 Interpretable by design Friendly straightforward graph explanations Great XAI graph-based


Yuan, H., Yu, H., Gui, S., & Ji, S. (2020). Explainability in graph neural networks: A taxonomic survey. arXiv preprint arXiv:2012.15445 Zecevic, M., Dhami, D. S., Velickovic, P., & Kersting, K. (2021). Relating graph neural networks to structural causal models. arXiv preprint arXiv:2109.04173 R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec. 2019 GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS Bose, A., & Hamilton, W. (2019). Compositional fairness constraints for graph embeddings. ICML. PMLR.

Causality

- Previous definitions relies on **Joint probabilities of (X,Y,S,A)** .
 - Reactive vision: take everything as given about the world as it is \rightarrow Observational
- Can we capture social context? Let's use causal models •
 - How changes in variables propagate in a system, be it natural, engineered or social
 - What should we do when there's no direct effect?

Exploit Structural Causal Model properties to look for biases Neal, B. (2020)



JUDEA PEARL AND DANA MACKENZII THE BOOK OF WHY THE NEW SCIENCE OF CAUSE AND EFFEC

Definition 4.2 (Structural Causal Model (SCM)) A structural causal model is a tuple of the following sets:

- 1. A set of endogenous variables V
- 2. A set of exogenous variables U
- 3. A set of functions f, one to generate each endogenous variable as a function of other variables

 $B := f_B(A, U_B)$ $M: C := f_C(A, B, U_C)$ $D := f_D(A, C, U_D)$

 U_B

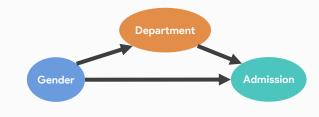
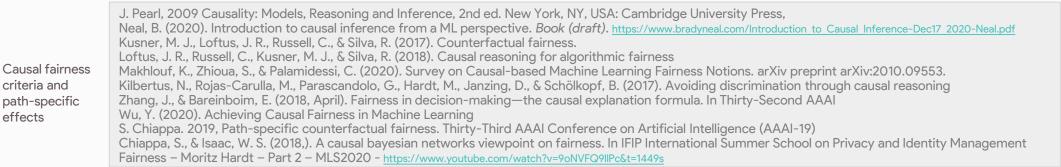



Figure 4.8: Graph for the structural equations in Equation 4.24.

criteria and

effects

Causality: examples

Counterfactual fairness:

- Outcome probability in factual world = the counterfactual world
- How would the world have to be different for a desirable output to occur?
- What would have happened if I were different?
- Causal Representation Learning
- Algorithmic Recourse
 - \rightarrow Causality +XAI \rightarrow explanations + recommendations
 - Actionable feedback about how to change the outcomes of ML models
 - "To have your loan approved, you would need to increase your income by \$10,000 per year"

"<u>Counterfactuals</u> explain complex models with the use of examples... ...while <u>recourse</u> tries to find actions that leads to a better outcome" Annabelle Redelmeier

	Counterfactuals	Recourse
Optimization function	Loss function	Cost function
Algorithm solves for	Vectors/Individuals (x)	Actions (δ)
Ultimate goal	Explain a model	Solve for actions to achieve "recourse"

Karimi, A. H., Barthe, G., Schölkopf, B., & Valera, I. (2020). A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv:2010.04050 Karimi, A. H., Schölkopf, B., & Valera, I. (2021,). Algorithmic recourse: from counterfactual explanations to interventions. In Proceedings of the 2021 ACM Conference FAccT A (deeper) look at counterfactuals in explainable AI April 29th, 2021 Annabelle Redelmeier Norwegian Computing Center (Norsk Regnesentral)

Libraries

Libraries

IBM Research Trusted AI

AI Fairness 360

FairKit

Benchmarking datasets

Images

• Big amount of tabular dataset in all domains

• Every dataset may have intrinsic bias

School Effectiveness 15362 Ethnicity, Gender R 9 [66] 75 Heart Disease [90] 303 Age. Gender MC, R German Credit 1K 20 MC [85] Age, Gender/Marital-Stat 14 BC Census/Adult Income [112] 48842 Age, Ethnicity, Gender, Native-Country Contraceptive Method Choice [121] 1473 9 MC Age, Religion Law School Admission [187] 21792 5 Ethnicity, Gender R 452 279 Age, Gender MC Arrhythmia [70] Communities & crime 1994 128 R [169] Ethnicity 13 Wine Quality [154] 4898 Color MC, R Heritage Health [146] ≈60K ≈ 20 Age, Gender MC, R Stop, Question & Frisk [45] 84868 ≈ 100 Age, Ethnicity, Gender BC, MC Bank Marketing [142] 45211 17 - 20Age BC Diabetes US [181] 101768 55 Age, Ethnicity BC, MC Student Performance 649 33 Age, Gender R [38] [122] ≈200K 40 Gender Skin-Paleness, Youth BC CelebA Faces 480 16 MC xAPI Students Perf. [6] Gender, Nationality, Native-Country 5 Chicago Faces [127] 597 Ethnicity, Gender MC Credit Card Default 30K 24 BC [195] Age, Gender COMPAS [119] 11758 36 Age, Ethnicity, Gender BC, MC ≈ 20 MovieLens [77] 100K Age, Gender R Drug Consumption [54] 1885 32 Age, Ethnicity, Gender, Country MC Student Academics Perf. MC [87] 300 22 Caste, Gender NLSY [148] $\approx 10 \text{K}$ Birth-date, Ethnicity, Gender BC, MC, R **Diversity** in Faces 47 [140] 1 MAge, Gender MC, R

Text

Pilot Parliaments Benchmark

Retiring Adult: New Datasets for Fair Machine Learning

 Frances Ding*
 Moritz Hardt*
 John Miller*
 Ludwig Schmidt*

 UC Berkeley
 UC Berkeley
 UC Berkeley
 Toyota Research Institute

Quy, T. L., Roy, A., Iosifidis, V., & Ntoutsi, E. (2021). A survey on datasets for fairness-aware machine learning. arXiv Oneto, L. (2020). Learning fair models and representations. Intelligenza Artificiale, 14(1), 125-152 Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017 Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. preprint arXiv:2110.13029. http://gendershades.org/overview.html - https://nips.cc/media/neurips-2021/Slides/26854.pdf

History and conceptual point of view

What should we learn from the past fairness research? What other conceptual concerns should we consider?

Fairness beginning: 60's & 70's

Shout out to pioneers

1966	1968	1971	1971	1973	1976	
Guion	Cleary	Thorndike	Darlington	Cole	Peterson and Novick	

• 60's: start to quantify bias

What should we learn?

- DON'T reinvent the wheel
- DON'T forget actual objective
 - ightarrow compensatory treatment to disadvantaged

- 70's: From unfairness to Fairness
 - FP & FN rates
 - Fair use of the test, rather than the scores themselves
- Mid 70's: halt ⊗, Why?
 - No analyses to unequivocally indicate fairness
 - No clear procedures to avoid unfairness
 - **Disagreement in views of fairness** view between professionals and general public
 - "Fairness actually obscure the fundamental problem, which is to find some rational basis for providing compensatory treatment for the disadvantaged" (Melvin R Novick et al. 1976)
- Rediscovered by ML around 13 year ago (Calders et al. 2009)

- DON'T get stacked in discussions far from real-world problems
- DON'T be far from **practical needs** of society, politics & law
- Work in political and law implication
- Relating fairness debates to ethical theories and value systems

 ML Fairness community should be more aware of our own implicit cultural biases

Hutchinson, B., & Mitchell, M. 2019. **50 years of test (un) fairness: Lessons for machine learning**. FAccT 2019 Nancy S Cole and Michael J Zieky. 2001. The new faces of fairness. Journal of Educational Measurement 38, 4 Rebecca Zwick and Neil J Dorans. 2016. Philosophical Perspectives on Fairness in Educational Assessment. In Fairness in Educational Assessment and Measurement T. Anne Cleary. 1966. Test bias: Validity of the Scholastic Aptitude Test for Negro and white students in integrated colleges Calders, Kamiran, and Pechenizkiy, "Building Classifiers with Independency Constraints," in In Proc. IEEE ICDMW, 2009, 13–18 Kamiran and Calders, "Classifying Without Discriminating," in Proc. 22Nd International Conference on Computer, Control and Communication, 2009.

Fair ML and law

"Careful attention should be paid to **legal and public concerns about fairness**. The experiences of the test fairness field suggest that in the coming years, **courts may start ruling on the fairness of ML models**. Therefore, **If technical definitions of fairness stay too far** from the public's perceptions of fairness, then the **political will to use scientific contributions** in advance of public policy **may be difficult to obtain**"

Hutchinson, B., & Mitchell, M. 2019. **50 years of test (un) fairness: Lessons for machine learning**. FAccT 2019

Other cultural and conceptual challenges

Even we are looking for bias, **we are** inducing bias CONTEXT MATTERS Quantitative techniques + policy-level questions

Make methods flexible to adapt to each situation, context and use

PUBLIC'S NOTION OF FAIRNESS Explicitly connect fairness criteria to different socio-cultural and philosophical values

Remind: Fairness and unfairness are related but different concepts

Try to **unify fairness** definition and framework

Make Fair ML research **accessible** to general public, other researchers

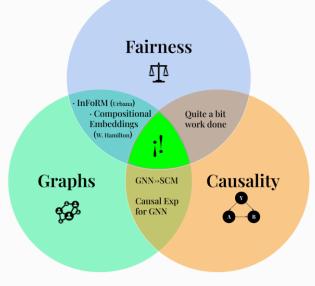
From equality to equity Give each one the resources that each one need to reach to the same point

Politics and law implication

Example of conceptual bias: Why groups should be treated as discrete categories?

- Most definitions of protected attribute-group relies on categoric division -> implicit cultural bias & unstable social construct
- Other possibility: intersectional modelling → **Protected attribute as continuous variables**
 - Quantify fairness along one dimension (e.g., age) conditioned on another dimension (e.g., skin tone)

e.g., Use Computer vision clustering of skin tones instead of pre-defined ethnics



Wrapping up

Conclusion

- **Don't feel overwhelmed** by the big amount methods and measures!
 - Method depends on task, and technical context
 - Definitions and metrics depends on the context
 - Development and relationship of the measures with ethics → Now you choose context experts

 social and ethical analysis
- More work needed in **ethical-cultural aspect**
 - Equity \rightarrow Considering individual resources
 - Continual protected attributes
 - Social-Law-Political needs close relationship
- Technical takeaways
 - Beyond observational \rightarrow Causality
 - Deep structural data relationship \rightarrow Graphs

Bibliography

- M. Hardt, E. Price, N. Srebro, Equality of opportunity in supervised learning, Advances in Neural Information Processing Systems (2016).
- Cynthia Dwork, et al. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
- Alexandra Chouldechova. 2016. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data.
- Verma, J. Rubin, Fairness definitions explained, IEEE/ACM International Workshop on Software Fairness (2018) 1–7.
- More references in each slide Richard Berka, Hoda Heidaric, Shahin Jabbaric, Michael Kearnsc, and Aaron Rothc. 2017. Fairness in Criminal Justice Risk Assessments: The State of the Art. .
- Alexandra Chouldechova. 2016. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data (2016)
- Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determination of Risk Scores. In ITCS .
- Ben Hutchinson and Margaret Mitchell. 2019. 50 Years of Test (Un)fairness: Lessons for Machine Learning.
- M.J. Kusner, J. Loftus, C. Russell and R. Silva, Counterfactual fairness, In Neural Information Processing Systems, (2017)
- Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017 н.
- Shira Mitchell. 2018. Reflection on quantitative fairness. Web Book
- Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. arXiv preprint arXiv:2110.13029. .
- L. Oneto, Learning fair models and representations, Intelligenza Artificiale 14 (1) (2020) 151-178.
- Castelnovo, A., Crupi, R., Greco, G., & Regoli, D. (2021). The zoo of Fairness metrics in Machine Learning. arXiv .
- Franco, D., Navarin, N., Donini, M., Anguita, D., & Oneto, L. (2022). Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 470
- A.F. Winfield, K. Michael, J. Pitt, V. Evers, Machine ethics: the design and governance of ethical ai and autonomous systems, Proceedings of the IEEE 107 (2019) 509-517 .
- D. Gunning, Explainable artificial intelligence (xai), Defense Advanced Research Projects Agency (DARPA), nd Web 2 (2)
- Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. preprint arXiv:2110.13029. .
- Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671 .
- Lim Swee Kiat. Retrieved December 2021. Machines go Wrong. https://machinesgonewrong.com/fairness/ н.
- Manuel Gomez Rodriguez et al. (2020). Human-Centric Machine Learning Feedback loops, Human-Al Collaboration and Strategic Behavior [Link]. Web
- Corbett-Davies & Goel. (2018). The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning
- Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35 .
- 2017. CS 294: Fairness in Machine Learning. https://fairmlclass.github.io (2017). Online; accessed February 2018

Talk in the scope of the project:

Achieving Fair, Accountable and Transparent Machine Learning Models through Graph Theory and Causality

Thesis in Progress by PhD Student Adrián Arnaiz Rodríguez

PhD Nuria Oliver

PhD Francisco Escolano

PhD Manuel Gómez Rodríguez

Thank you!

Q's & feedback?

adrian@ellisalicante.org

