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Algorithmic bias problem and fairness at a glance

ML is used for critical decision making

How bias appears in society:
• Sources of bias
• Examples of bias

Challenges of AI
• Uncover bias/unfairness
• Measure bias (definitions Fairness)
• Mitigate bias
• Real world applications

How do we formulate the bias-fairness problem in every problem set up?

How do we detect the bias and how to solve it?

How could we define and measure bias or fairness?

Which are the ethical principles that follows each definition of bias and fairness?

Which are the implications in the real-world problems and, specifically in our own value system? 



What is fairness for you?



Justice, equality and equity
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ML for critical decision making
• ML models are becoming the main tools for addressing complex societal problems in many 

consequential areas of our lives
▪ Education 
▪ Justice: pretrial and detention
▪ Security 
▪ Health 
▪ Child Maltreatment screening
▪ Social Services
▪ Hiring 
▪ Finance
▪ Advertising

• Each one with its own objectives
▪ Reduce cost
▪ Maximize social benefit
▪ …

Ethical implications
Many of these concepts do not have universally accepted definitions

✓ Privacy
✓ Transparency
✓ Accountability

✓ Reliability
✓ Autonomy
✓ Fairness



Harms from Algorithmic Decision-Making

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In FAccT. PMLR. http://gendershades.org/overview.html

http://gendershades.org/overview.html


ML for critical decision making - examples
• Finance

– A. Byanjankar, M. Heikkilä, and J. Mezei. Predicting credit risk in peer-to-peer lending: A neural network approach. In IEEE 
Symposium Series on Computational Intelligence, 2015

• Hiring
– M. Bogen and A. Rieke. Help wanted: An examination of hiring algorithms, equity, and bias. Technical report, Upturn, 2018

• Pretrial and detention
– J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine Bias: There’s software used across the country to predict future 

criminals. And it’s biased against blacks., 2016.

• Child maltreatment screening
– A. Chouldechova, E. Putnam-Hornstein, D. Benavides-Prado, O. Fialko, and R. Vaithianathan. A case study of 

algorithmassisted decision making in child maltreatment hotline screening decisions. In Proceedings of the 1st 
Conference on Fairness, Accountability and Transparency, pages 134–148, 2018. 

• Education
– L. Oneto, A. Siri, G. Luria, and D. Anguita. Dropout prediction at university of genoa: a privacy preserving data driven 

approach. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2017.

• Social Services
– V. Eubanks. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin’s Press, 2018



Bias is implicit in every decision we make

Bias Behaviour Actions
Data & 
model 
design

Nature

Subconscious

Culture - Ethics

Specific -
Environmental

Everything is based on our biases
Some of them are legitimate and others not
Even when defining legitimate or not → from our bias



Human centric ML approaches

AI systems learning moral notions

AI-based systems can learn moral notions or ethical 
behaviors and then autonomously behave ethically

• Comparative Moral Turing Test

• Ethical Turing Test

➢ Evaluate the morality of the choices of automated 
systems

➢ Branch quite unexplored: difficult connection 
between philosophy, ethic and technical problems

➢ AGI related

How humans should design AI systems
to minimize harms

Designing for minimizing harms derived from poor 
design, bad applications and misuse of the systems

• Algorithmic Fairness

• Privacy Preserving Data Mining – Federated Learning

• Explainable AI [2] & Interpretable AI

• Adversarial Learning 

➢ Many more examples due to many different ML 
methods and problems addressed

Franco, D., Navarin, N., Donini, M., Anguita, D., & Oneto, L. (2022). Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 470
1. A.F. Winfield, K. Michael, J. Pitt, V. Evers, Machine ethics: the design and governance of ethical ai and autonomous systems, Proceedings of the IEEE 107 (2019) 509–517
2. D. Gunning, Explainable artificial intelligence (xai), Defense Advanced Research Projects Agency (DARPA), nd Web 2 (2).

HCML Perspective: building responsible AI including human relevant requirements, but also 
considering broad societal issues [1]

- Safety, Fairness, privacy, accountability &  interpretability      - Ethics and legislation
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What should we consider to formally defining fairness?

• How we define different discriminations?

• What are the main sources of bias?

• How we define fairness and measure it?

• How do we find bias in our models?

• How we mitigate bias / impose fairness in our models?
– What kind of different approaches are there?

• What are some examples of real applications?

•
Different kind of 
discriminations

Many sources of 
bias

Different fairness 
definitions based 

on different 
fundamentals

Countless types of 
models in which bias is  
analyzed and fairness 

is imposed

Numerous real 
problems

Hints on the 
complexity of 

formally 
defining 
fairness

What is discrimination? How is it caused? How can we define unfairness and 
how I measure it? 

How can we find unfair models? 
How can we implement fair models? 

How do we eventually apply this?



Algorithmic Fairness
• Algorithmic Fairness deals with the problem of developing AI-based systems able to treat:

▪ Subgroups in the population equally →Group fairness
▪ Similar individuals in a similar way → Individual Fairness

• Subgroups → determined by means of sensitive attributes, considered for decisions
▪ Gender, incomes, ethnicity, and sexual or political orientation and so on

X

Y

Label

VS -



Algorithmic Fairness
• How to enhance ML models with fairness requirements, not unethically biasing decisions 

• Ensure that the outputs of a model DO NOT depend on sensitive attributes 
▪ In a way that is considered unfair - differences due to such traits cannot be reasonably justified

𝑭 𝑿 = 𝑹, 𝑨 ∈ 𝑿→ R ⊥ A

• Many approaches: properties of the model outputs with respect to the sensitive attributes

• Relationships among all relevant variables in the data → unfairness underlying
▪ If not → COMPAS: biased recidivism application even not using sensitive data

L. Oneto, S. Chiappa, Fairness in machine learning, Recent Trends in Learning From Data (2020)

Unfair decisions due to sensitive attributes
Training data Bias

Model inaccuracies



Correctional Offender Management Profiling for Alternative Sanctions - COMPAS



Not only fair decisions: echo chambers

Personal Project: https://twitter.com/Arnaiztech/status/1331996276045582339

• US House of Representatives 1973 VS 2016

• Two politicians are linked  if they have supported 3+ initiatives together

1973 2016

https://twitter.com/Arnaiztech/status/1331996276045582339


Before kicking off: spoiler

• There are quite a lot different  approaches to mitigating unfairness. 

• No single approach is universally best → No free lunch 

• Choosing the most appropriate one will require:

Takeaway: Choosing Fairness metric and method highly depends on the context

No universal fairness definition or bias mitigation / imposing fairness approach

Expert judgement Knowledge of relevant legal 
and compliance requirements

Context in which we are 
working



Bias

Different types



Bias & Sources

1. How law define bias?
• Disparate treatment
• Disparate impact

2. Bias in in ML
• By source
• By interaction

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671



Disparate Treatment and Impact
• Anti-discrimination laws in various countries prohibit 

unfair treatment of individuals

• Legal or ethical support and formalize it quantitively
▪ Disparate treatment: 

– Decisions are (partly) based on the subject’s sensitive 
attribute

– Explicit or intentional
▪ Disparate impact: 

– Outcomes or implemented policy disproportionately hurt 
people with certain sensitive attribute

– Implicit or unintentional

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671
Lim Swee Kiat. Retrieved December 2021. Machines go Wrong. https://machinesgonewrong.com/fairness/
Ingold, D. and Soper, S., 2016. Amazon doesn’t consider the race of its customers. Should It?. Bloomberg News.

https://machinesgonewrong.com/fairness/


Sources of Bias – Data

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671
Manuel Gomez Rodriguez et al. (2020). Human-Centric Machine Learning Feedback loops, Human-AI Collaboration and Strategic Behavior [Link]. Web
Corbett-Davies & Goel. (2018). The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning
Lakkaraju, H. et al. (2017). The selective labels problem: Evaluating algorithmic predictions in the presence of unobservables. 23rd SIGKDD

Bias in historical data
• Skewed towards groups or imbalanced limited information

• Amazon, COMPAS or 2018-CEO-image-search
• Easy to ignore biases and surrogate variables for protected 

attributes
• Label imperfectly observed: Label bias
• Record of crimes comes from crimes observed by police

Bias in data collection mechanisms
• Inherent biases in the data collection mechanisms
• Lack of representativeness
• Crowdsourcing from a technology that only uses a type of 

people → Autonomous car related with wealthier

Bias in alternate sources of data
• “New” sources of data: worldwide web, social media, blogs
• Digital footprint variables: computer brand or type of device

• Proxies of protected attributes
• Socio-economic variables → surrogates for protected 

groups

Selective labels - Unobservable Outcomes
• Observed outcomes are consequence of the existing 

choices of the human decision-makers
• → Label distribution based on previous policy

• Was former policy accurate or biased?
• Would they have defaulted if had they been approved for a 

mortgage? →Counterfactual
• Tainted samples → Decision-maker bias
• We observe loan defaults only for those who received a 

mortgage → we do not have any information for those who 
were denied

• We observe whether a defendant fails to return for their 
court appearance only if the human judge decides to release 
the defendant on bail

https://people.mpi-sws.org/~manuelgr/manuelgr-human-centric-ml-2020.pdf


Examples of selective label

Manuel Gomez Rodriguez et al. (2020). Human-Centric Machine Learning Feedback loops, Human-AI Collaboration and Strategic Behavior [Link]. Web

https://people.mpi-sws.org/~manuelgr/manuelgr-human-centric-ml-2020.pdf


Sources of Bias – Algorithm
• The automated nature of modern ML

▪ Millions of automated data-transformations to get a tiny improvement in predictive performance
▪ Don’t carefully review the selected variables → surrogate variables and  proxy discrimination

• Overfitting and hyperparameter tunning can amplify biases

• Opaqueness and lack of interpretability of complex ML algorithms
▪ If one can identify the input-output relationships → easier to isolate potential algorithmic bias

• Inherent biases in programmers conveyed to the algorithm

• Unexpected decisions in traditional programming
▪ Deliveroo riders affected by the ranking algorithm → Reliability index

Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671
Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35
Jonathan Keane (2021). Deliveroo Rating Algorithm Was Unfair To Riders, Italian Court Rules. Web: Forbes

Personal and 
protected reasons

Shift 
Cancelation/
Acceptation

Reliability index Ranking of 
good riders Offered Shifts

https://www.forbes.com/sites/jonathankeane/2021/01/05/italian-court-finds-deliveroo-rating-algorithm-was-unfair-to-riders/


Sources of Bias – By interaction
• Data to Algorithm

− Measurement Bias
− Omitted Variable Bias
− Representation Bias
− Aggregation Bias

− E.g., Sympson paradox
− Sampling Bias
− Longitudinal Data Fallacy
− Linking Bias
− Proxie

• Algorithm to User
− Algorithmic Bias
− User Interaction Bias - Ranking
− Popularity Bias
− Emergent Bias
− Evaluation Bias

• User to Data
− Historical Bias
− Population Bias
− Self-selection Bias
− Social Bias
− Behavioral Bias
− Survivorship bias
− Temporal Bias
− Content production bias

Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35
Ricardo Baeza-Yates. 2018. Bias on the web. Commun. ACM 61, 6



Fairness 
definitios and 

metrics
Several notions of fairness 

already exist in the literature



Recap: Algorithmic Fairness
• Algorithmic Fairness deals with the problem of developing AI-based systems able to treat:

▪ Subgroups in the population equally →Group fairness
▪ Similar individuals in a similar way → Individual Fairness
▪ Other newer approaches

• Subgroups → determined by means of sensitive attributes, considered for decisions
▪ Gender, incomes, ethnicity, and sexual or political orientation and so on

• Ensure that the outputs of a model DO NOT depend on sensitive attributes 
▪ In a way that is considered unfair - differences due to such traits cannot be reasonably justified

𝑭 𝑿 = 𝑹, 𝑨 ∈ 𝑿→ R ⊥ A
▪ Many approaches: properties of the model outputs with respect to the sensitive attributes

How do we define equally?
How we define similar?

VS -



Decision Rules: Classification
• Each individual has a set of features: 

▪ 𝑥𝑖 ∈ ℝ𝑝

• 𝑥 can be partitioned into protected and unprotected features:
▪ 𝑥 = (𝑥𝑢, 𝑥𝑝)

▪ Set of protected features: 𝑨 ∈ 𝑋→ different A values leads to different protected groups

• Target of prediction
▪ 𝑦 ∈ 0, 1

• Training samples
▪ 𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖

𝑁

• Random variables 𝑋 and 𝑌 that take on values 𝑿 = 𝑥 and 𝒀 = 𝑦 for an individual drawn randomly from the 
population of interest

• Binary classification
▪ 𝑓:ℝ𝑝 → {0, 1}, where ො𝑦 = 𝑓(𝑥) or, in population level ෠𝑌 = 𝑓(𝑋)

• Risk score
▪ True risk score: r x = Pr(Y = 1|X = x)

▪ Model approximation of risk score s x instead of binary decision and 𝒅 𝒙 = 𝟏 𝒊𝒇𝒇 𝒔 𝒙 > 𝒕

▪ R=E[Y∣X]



Confusion matrix

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017
Zafar, M. et al. (2017). Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. 26th WWW.
Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE.

Event Condition Notion 
𝑷(𝒆𝒗𝒆𝒏𝒕|𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏)

෠𝑌 = 0 𝑌 = 0 True Negative rate

෠𝑌 = 1 𝑌 = 0 False Positive rate

෠𝑌 = 0 𝑌 = 1 False Negative rate

෠𝑌 = 1 𝑌 = 1 True Positive rate

Event Condition Notion 
𝑷(𝒆𝒗𝒆𝒏𝒕|𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏)

𝑌 = 0 ෠𝑌 = 0 Positive predicted value

𝑌 = 1 ෠𝑌 = 1 Negative predicted value

Classical clf criteria

Additional clf criteria

Confusion matrix allow us to go further accuracy in error 
explanations related with joint distributions of (𝑿, ෡𝒀, 𝒀)

Predicted Label

Positive Negative

T
ru

e 
L

a
b

el

Positive True Positives

𝑷𝑷𝑽 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑻𝑷𝑹 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

False Negative

𝑭𝑶𝑹 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑁

𝑭𝑵𝑹 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

Negative False Positive

𝑭𝑫𝑹 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑃

𝑭𝑷𝑹 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

True Negatives

𝑵𝑷𝑽 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁

𝑻𝑵𝑹 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃



More confusion matrix measures

Wikipedia. Precision and recall. https://en.wikipedia.org/wiki/Precision_and_recall

• Confusion matrix allow us to go further accuracy in error explanations related with joint distributions of (𝑿, ෡𝒀, 𝒀)

• However, it may seem quite unmanageable to try all possible combinations

• How do we leverage all this measures for fairness? → Add sensitive attribute to conditional probabilities

𝑃𝑟 ෠𝑌 = 𝑦 𝑌 = 𝑦
𝑃𝑟(𝑌 = 𝑦| ෠𝑌 = 𝑦)

https://en.wikipedia.org/wiki/Precision_and_recall


Group fairness: main definitions
Predicted Probabilities (𝑺) and Actual Outcome (𝒅) → A ⊥ Y | S

• Calibration – predictive parity but with probabilities → A ⊥ Y | S 
P( Y=1 | S=s, A=a )= P( Y=1 | S=s, A=b ), ∀ s ∈ [0, 1]

• Well calibration
P( Y=1 | S=s, A=a )= P( Y=1 | S=s, A=b ) = s, ∀ s ∈ [0, 1]

• Balance for positive class - equal average predicted S for actual 
positives

E( S | Y=1, A=a ) = E( S | Y=1, A=b )

• Balance for negative class - same average predicted S for actual 
negatives

E( S | Y=0, A=a ) = E( S | Y=0, A=b )

Predicted Outcome (෡𝒀) → A ⊥ S 

• Demographic parity [1] → A ⊥ S (independence)

P(d=1|A=a) = P(d=1|A=b)

Predicted ( ෠𝑌) and Actual Outcomes (𝒅) 

• Predictive parity [2] - Same PPV→ A ⊥ Y | S (sufficiency)

P( Y=1 | d=1, A=a ) = P( Y=1 | d=1 , A=b ) 

• Predictive equality - Same FPR [TNR]
P( d=1 | Y=0, A=a ) = P( d=1 | Y=0, A=b )

• Equal opportunity – Same FNR [TPR]
P( d=0 | Y=1, A=a ) = P( d=0| Y=1, A=b )

• Equalized odds [3]– same TPR and FPR→ A ⊥ S | Y (separation)

P( d=1 | Y=i , A=a ) = P( d=1 | Y=i, A=b ), ∀ i ∈ {0, 1}

• Conditional use accuracy equality – same accuracy for G
P( Y=1 | d=1, A=a ) = P( Y=1 | d=1, A=b ) ∧
P( Y=0 | d=0, A=a ) = P(Y=0 | d= 0, A=b ) 

• Overall accuracy equality – general accuracy
P( d=Y, A=a ) = P( d=Y, A=b ). 

• Treatment equality – same ratio of errors.
(FN/FP)f=(FN/FP)m.

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017
Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE.
[1] Cynthia Dwork,et al. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
[2] Alexandra Chouldechova. 2016. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data.
[3] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of Opportunity in Supervised Learning. In Advances in Neural Information Processing Systems

Example of incompatibility
If different base rate P(Y=1|A=a) ≠ P(Y=1|A=b)

and satisfies predictive parity
→ Cannot satisfy Equalized odds

ML model should behave equally, or at least similarly, no matter whether 
it is applied to one subgroup in the population or to another one



Definition clarification: Formal criteria

D \ Y 0 1

0 Predictive equality Equal opportunity

1 Predictive equality
Equal odds

Equal opportunity
Equal odds

Y \ D 0 1

0 Conditional use acc Predictive parity

1 Predictive parity
conditional use acc Overrall accuracy

P(D=d | Y=y, A=a)=P(D=d | Y=y, A=b)

P(Y=y | D=d , A=a)=P(Y=y | D=d, A=b)

Group fairness and conditional statistical parity

P( d=[0,1] | Y=[0,1] ) AND P( Y=[0,1] | d=[0,1] )



Definition clarification: Formal criteria

Independence Separation Sufficiency

S⊥A S⊥A | Y A⊥Y | S

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017

“Many fairness criteria have been proposed over the years, each aiming to formalize different desiderata. We’ll start 
by jumping directly into the formal definitions of three representative fairness criteria that relate to many of the 

proposals that have been made.” (Hardt et al., Fairness in Machine Learning book, 2019)

Equalized odds 
P( d=1 | Y=i , A=a ) = P( d=1 | Y=i, A=b ), i ∈ 0, 1

Equal opportunity 
P( d=0 | Y=1, A=a ) = P( d=0| Y=1, A=b)

TPR - FPR 
Equal error rates

Predictive Parity 

P( Y=1 | d=1, A=a ) = P( Y=1 | d=1 , A=b )

Calibration

P( Y=1 | S=s>t, A=a )= P( Y=1 | S=s>t, A=b )∀ t

PPV - NPV 
Calibration by group

Demographic parity 
P(d=1|A=a) = P(d=1|A=b)

Positive Predicted Ratio
Equal acceptance rate

𝑷 𝑺 𝑨 𝑷 𝒀 𝑺, 𝑨𝑷(𝑺|𝒀, 𝑨)

SA Y SA SA Y



Definition clarification: Formal criteria

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017



Group fairness gaps
• Proved that statistical definitions are insufficient [1, 2, 3, 4]

• Moreover, most valuable statistical metrics assume availability of actual, verified outcomes.
▪ Problems with Selective label bias

• Similar individuals may not be treated equally for achieving measures of group fairness

• Demographic Parity [Independence] 
▪ Ignores any possible correlation between Y and A
▪ E.g., Perfect predictor (S=Y) is not considered fair when base rates differ (i.e., P[Y=1 |A=a] ≠ P[Y=1|A=b])
▪ laziness: if we hire the qualified from one group and random people from the other group, we can still achieve 

demographic parity.

• Equalized Odds – Predictive Parity [separation and sufficiency]
▪ It may not help closing the gap between two groups

[1] Richard Berka, Hoda Heidaric, Shahin Jabbaric, Michael Kearnsc, and Aaron Rothc. 2017. Fairness in Criminal Justice Risk Assessments: The State of the Art.
[2] Alexandra Chouldechova. 2016. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism Prediction Instruments. Big Data (2016)
[3] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness Through Awareness. 3rd Innovations in Theoretical CS Conference. 
[4] Jon M. Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determination of Risk Scores. In ITCS
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Individual Fairness
• Group Fairness → Similar individuals could not be treated equally due to calibrations across 

groups to achieve group fairness measures

• Individual Fairness → treating similar individuals similarly
▪ Difference between individuals similar to difference in predictions
▪ More fine-grained than any group-notion fairness: it imposes restriction on for each pair of 𝑖.

Our Dataset: 𝑫 = 𝒙𝒊, 𝒚𝒊 𝒊
𝑵

Distance between 𝒙𝒊pairs: 𝒌: 𝑽 𝒙 𝑽 → 𝑹.

Mapping from 𝒙𝒊 to probability distribution over outcomes 𝑴: 𝑽 → 𝜶𝑨

Distance between distributions of outputs 𝑫

Individual fairness 𝑫(𝑴(𝒙),𝑴(𝒚)) =< 𝒌(𝒙, 𝒚)

• ? How to define appropriate distance metrics for the specific problem and application?

Dwork, C., et al.2012. Fairness through awareness. Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214-226
Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE.

Metric Learning Representation LearningGraph Theory

https://en.wikipedia.org/wiki/Similarity_learning#Metric_learning


Individual Fairness flaws
• Big expertise to establish a distance metric between individuals. 

▪ Metrics can still be implicit biased 

• Testing definitions relies on availability of “similar” individuals
▪ Search space very large → e.g., the global population.
▪ More work to narrow down the search space without impeding the accuracy

• Distance between data does not only depends on pairwise distances 
→ Relationships among every all the data and topology (cliques or communities on graphs)

• Very difficult to find the proper metric (both 𝑑 and 𝑀)
▪ Specifically, 𝑀→ unseen labels → Selective Labels / unobserved variables / substitutes labels

Dwork, C., et al.2012. Fairness through awareness. Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214-226
Kim, M. P., Reingold, O., & Rothblum, G. N. (2018). Fairness through computationally-bounded awareness. NIPS 2018

BSc / 1y.e.

MSc / 1y.e.

MSc / 0y.e.

A

B

C

Graph Theory
Representation Learning
Semi/Self-Supervised Learning

Is individual A closer to B than C? How much? 
→ very metric dependent 𝑑

Is A closer to B than C regarding their predicted performance?
→We don’t have real ground truth → Selective labels
→ Very metric dependent 𝑀



Counterfactual fairness
• Group

▪ Observational fairness criteria
▪ Cannot find the cause of the unfairness

M.J. Kusner, J. Loftus, C. Russell and R. Silva, Counterfactual fairness, In Neural Information Processing Systems, (2017)
Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017
Shira Mitchell. 2018. Reflection on quantitative fairness. Web Book

• Individual
▪ Limitation of finding the proper metric.

• Causality→ Explaining the impact of bias via a causal graph
▪ Replacing A, other correlated features with it will also be influenced 

• Ideal idea? hard to reach a consensus in terms of 
▪ what the causal graph should look like?
▪ which features to use even if we have such a graph?

Causal graphs: Acyclic graphs  
- nodes representing attributes
- edges representing relationships



Counterfactual fairness
• Counterfactual→“Would I have been hired if I were non-black?” “Would I have avoided 

the traffic jam had I taken a different route this morning?”
▪ Decision does not depend on protected attribute

• The counterfactual 𝒀 𝑿:=𝟏,𝒁:=𝒁𝑿:=𝟎 is the value that Y would obtain had X been set to 1 and 
had Z been set to the value Z would’ve assumed had X been set to 0

• Fair Causal graph → if Y don’t depend on A, i.e., no A-Y way
▪ Make decision only using non-descendants of A in the causal graph

• Difficult task of agreeing on which graph to build and validating it
• Impossible to test an existing classifier against strict causal definitions of fairness
• What should we do when not we are not able to built neither validate a causal graph?

▪ Counterfactual discrimination criteria → normative fairness criteria

M.J. Kusner, J. Loftus, C. Russell and R. Silva, Counterfactual fairness, In Neural Information Processing Systems, (2017)
Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017
Shira Mitchell. 2018. Reflection on quantitative fairness. Web Book



Counterfactual fairness
• Notation of d(w), d(m) be the decision if the individual had been woman or men

• Individual Counterfactual Fairness
𝒅𝒊(𝒘) = 𝒅𝒊(𝒎) for individual 𝑖 and every other attribute remaining the same, i.e.,
𝑷 ෡𝒀 𝑨←𝒂 𝑼 = 𝒚 𝑿 = 𝒙,𝑨 = 𝒂) = 𝑷(෡𝒀𝑨←𝒃(𝑼) = 𝒚|𝑿 = 𝒙, 𝑨 = 𝒂)

▪ negative answer to “would the decision have been different if I were not black?”

• Counterfactual Demographic Parity
𝑬 𝒅 𝒘 = 𝑬 𝒅 𝒎 i.e.,
𝑬[෡𝒀 | 𝑿 = 𝒙, 𝑨 = 𝒂] = 𝑬[ ෡𝒀 | 𝑿 = 𝒙, 𝑨 = 𝒃 ]∀ 𝑿 𝒂𝒏𝒅 ∀ (𝒂, 𝒃)

▪ negative answer to “would the rates of hiring be different if everyone were black?”

• Conditional Counterfactual Parity
𝑬[𝒅(𝒘) | 𝑿] = 𝑬[𝒅(𝒎) | 𝑿]

▪ “would the rates of hiring be different if everyone were black?” BUT stratified by some factors

• The easiest way to satisfy counterfactual demographic parity is :
prediction only use non-descendants of A in the causal graph

M.J. Kusner, J. Loftus, C. Russell and R. Silva, Counterfactual fairness, In Neural Information Processing Systems, (2017)

Related with Conditional Demographic Parity 
𝑃(𝑑 = 1|𝐿 = 𝑙, 𝐴 = 𝑎) = 𝑃(𝑑 = 1|𝐿 = 𝑙, 𝐴 = 𝑏)

which means ෠𝑌 ⊥ 𝐴 | 𝑋



Counterfactual in real world

“Race plays a significant role in admissions decisions. Consider the example of an Asian-
American applicant who is male, is not disadvantaged, and has other characteristics that 

result in a 25% chance of admission. Simply changing the race of the applicant to white— and 
leaving all his other characteristics the same—would increase his chance of admission to 

36%. Changing his race to Hispanic would increase his chance of admission to 77%. Changing 
his race to African-American would increase his chance of admission to 95%”. 

(150 Plaintiff’s expert report of Peter S. Arcidiacono, Professor of Economics at Duke University)

• Logistic regression model against Harvard’s past admissions decisions

• Conditional statistical parity is not satisfied
P(d=1 | L=l, A=a) = P(d=1 | L=l, A=a) 

150 Plaintiff’s expert report of Peter S. Arcidiacono, Professor of Economics at Duke University



Fairness measurement in benchmarking dataset
• So, is the classifier fair? → Logistic regression on German Credit Dataset

German Credit Dataset. M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics. uci.edu/m
Verma, S., & Rubin, J. (2018). Fairness definitions explained. In 2018 ieee/acm fairware. IEEE. l

• Depends on the notion of fairness one wants to adopt. 
▪ More work is needed to clarify which definitions are appropriate to each particular situation

Context matters



Summary of metrics
• Group Fairness

▪ Independence, separation, sufficiency
▪ Confusion matrix-related 
▪ Counterfactual parity

• Individual Fairness
▪ Metrics
▪ Individual counterfactual

• Counterfactual
▪ Conceptually
▪ Applied

• Many more…

Lim Swee Kiat. Retrieved December 2021. Machines go Wrong. https://machinesgonewrong.com/fairness/
Oneto, L. (2020). Learning fair models and representations. Intelligenza Artificiale, 14(1), 125-152.DOI 10.3233/IA-190034
Castelnovo, A., Crupi, R., Greco, G., & Regoli, D. (2021). The zoo of Fairness metrics in Machine Learning. arXiv

https://machinesgonewrong.com/fairness/


Metrics clarification
• Theory: Formal criteria aforementioned: 

▪ A⊥S|X – A⊥S – A⊥S|Y – A⊥Y|S

• Applied: Majumder, S. et al (2021) 
▪ 26 classification metrics → 7 clusters
▪ 4 dataset metrics → 3 clusters

RQ1: Do current fairness metrics agree with each other? 

No → 51% agreement

RQ2: Can we group (cluster) fairness metrics based on 
similarity?

Yes →minimizing intra-cluster disagreement

RQ4: Can we achieve fairness based on all the metrics at the 
same time?

No. Each cluster and metric measure on thing, sometimes opposite

Again, choose depends on the context

Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. preprint arXiv:2110.13029.



Saleiro, P., et al. (2018). Aequitas: A bias and fairness audit toolkit. arXiv:1811.05577
http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/

Metrics clarification

http://www.datasciencepublicpolicy.org/our-work/tools-guides/aequitas/


Impossibility 
Theorem

Why different definitions are not compatible?
Inherent Trade-off of fairness



Fairness limitations

• Accuracy VS Fairness

• Group Fairness Impossibility Theorem

• Group VS Individual



Accuracy vs Fairness Tradeoff

Valdivia, A., Sánchez‐Monedero, J., & Casillas, J. (2021). How fair can we go in machine learning? Assessing the boundaries of accuracy and fairness. IJIS, 36(4), 1619-1643.
Menon, A. K., & Williamson, R. C. (2018, January). The cost of fairness in binary classification. In Conference on Fairness, Accountability and Transparency (pp. 107-118). PMLR
Zafar, M. B., Valera, I., Rogriguez, M. G., & Gummadi, K. P. (2017, April). Fairness constraints: Mechanisms for fair classification. In Artificial Intelligence and Statistics . PMLR.

𝑝%𝑟𝑢𝑙𝑒 = min(
𝑃{ ෠𝑌 = 1 | 𝐴 = 𝑎}

𝑃 ෠𝑌 = 1 𝐴 = 𝑏}
,
𝑃{ ෠𝑌 = 1 | 𝐴 = 𝑏}

𝑃 ෠𝑌 = 1 𝐴 = 𝑎}
) ≥

𝑝

100

Impose constraints on the accuracy with fairness metrices leads to not aligned objectives
Tradeoff depends on how “similar” Y and A are → e.g., if aligned, then linear penalty

The more aligned, the more one will penalize the other
We will have solutions in the pareto front



Formal criteria’s impossibility theorem
• Independence vs sufficiency – DP vs PP

▪ If A¬⊥Y→ either DP or PP, but NOT BOTH

• Independence vs Separation – DP vs EO
▪ If Y¬⊥ A && Y¬⊥ S → either DP or EO, but NOT BOTH

• Separation vs sufficiency – EO vs PP
▪ If 𝑃 𝑎, 𝑠, 𝑦 > 0 ∀ 𝐴𝑥𝑆𝑥𝑌 (all events in the joint distribution of have positive probability) AND
▪ If A¬⊥Y→ either EO or PP, but NOT BOTH
▪ If predictor satisfy EO, PP requires equal PPV, and therefore need equal base rates → Not usually happen
▪ i.e., If different base rates P( Y=1 | A=a ) ≠ P( Y=1 | A=b ) → either EO or PP, but NOT BOTH

J. Kleinberg, S. Mullainathan, M. Raghavan, Inherent trade-offs in the fair determination of risk scores, Innovations in Theoretical Computer Science Conference
Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2), 153-163
Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017

Make 2 FP to achieve EO
Equal TPR and TNR between groups

Negative Predictive Parity violated
Not possible to preserve NPV without 
sacrificing EO/PP

Independence Separation Sufficiency

A⊥S A⊥S | Y A⊥Y | S

¬⊥→ dependent   ||   ⊥→ Independent
Demographic Parity - DP

Equalized odds - EO
Predictive Parity - PP



Formal criteria’s 
relationship

𝑷 𝒚 𝒔, 𝑨 × 𝑷 𝒔 𝑨 = 𝑷(𝒔|𝒚, 𝑨) × 𝑷(𝒚|𝑨)

Predictive Parity Demographic Parity Equalized odds Base Rate

Proofs based on Positive Predicted Value, TPR and FPR

If unequal base rates && not perfect classifier 
→ Sufficiency implies that Error parity Fails

Martin Wattenberg, Fernanda Viégas, and Moritz Hardt Attacking 
discrimination with smarter ML. 
https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Loan granting: 2 groups with different base rates

• Maximize profit → violate TPR and PR

• Unaware → orange gets fewer loans - also violate TPR and PR

• Demographic Parity (PR) → Violates TPR (EO)

• Equalized odds (EO) → Violates PR (DP)

MAX PROFIT UNAWARE

DP
Independence

EO
Separation

A
cc

ur
ac

y
TP

R
 -

PR

https://research.google.com/bigpicture/attacking-discrimination-in-ml/


Garg, P., Villasenor, J., & Foggo, V. (2020). Fairness metrics: A comparative analysis. In 2020 IEEE  Big Data. IEEE.
del Barrio, E., Gordaliza, P., & Loubes, J. M. (2020). Review of mathematical frameworks for fairness in machine learning. arXiv
Castelnovo, A., Crupi, R., Greco, G., & Regoli, D. (2021). The zoo of Fairness metrics in Machine Learning. arXiv preprint arXiv:2106.00467
Chiappa, S., & Isaac, W. S. (2018). A causal bayesian networks viewpoint on fairness. In IFIP International Summer School on Privacy and Identity Management. Springer, 
Cham.Oneto, L., & Chiappa, S. (2020). Fairness in Machine Learning. ArXiv, abs/2012.15816.
Martin Wattenberg, Fernanda Viégas, and Moritz Hardt Attacking discrimination with smarter ML. https://research.google.com/bigpicture/attacking-discrimination-in-ml/
Moritz Hardt - MLSS 2020, Tübingen. https://youtu.be/Igq_S_7IfOU?t=4056
http://www-student.cse.buffalo.edu/~atri/algo-and-society/support/notes/fairness/index.html

Metrics not sufficient on their own

Impendence and error rate parity [EO, FPR] violated

Statistical fairness criteria on 
their own cannot be a proof of 

fairness, just a piece of it

https://research.google.com/bigpicture/attacking-discrimination-in-ml/
https://youtu.be/Igq_S_7IfOU?t=4056
http://www-student.cse.buffalo.edu/~atri/algo-and-society/support/notes/fairness/index.html


Imposing 
fairness

How to plug chosen fairness definition into 
the training on ML algorithms?



How to satisfy Fairness criteria
Pre-processing

▪ From feature space to a representation→ Independence S⊥A
▪ Model learned from this representation will be fair [Data processing inequality Information Theory]

▪ Model agnostic
▪ Information loss in latent space

Post-processing
▪ Taking a trained classifier → adjust it depending on the sensitive attribute and randomness
▪ independence is achieved
▪ Works for black-box models and no re-training needed
▪ Useful when no access to training data, complex-no access to training pipeline
▪ Not that efficient due to the same reasons

In-processing
▪ Fairness constraints in the optimization process 
▪ Powerful → fairness during the optimization process
▪ Loss of generality → each type of model and specific task uses its own regularize



Lots of them…
again

• Method family
▪ Pre
▪ In
▪ Post

• Task
▪ Binary classification
▪ Multiclassification
▪ Regression

• Protected attribute
▪ Binary
▪ Categorical
▪ Numerical

Oneto, L. (2020). Learning fair models and representations. Intelligenza Artificiale, 14(1), 125-152.DOI 10.3233/IA-190034



Pre-processing: Fair Representation Learning
• Approaches

▪ Awareness
▪ Representation Learning
▪ Re-weighting
▪ Resampling →Over/Under – SMOTE, etc

• Z → Latent representation
▪ max𝑍=𝑔(𝑋) 𝐼(𝑋; 𝑍)

▪ subject to 𝐼 𝐴; 𝑍 < 𝑒

▪ S⊥A

• Strict approach →Optimizes only Statistical Parity or Individual Fairness 
▪ Info of Y not used

• No need to access A at test time nor Y at representation time
• If Y is used → hybrid approach with potential better results  [S⊥A|Y and Y⊥A|S]

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., & Dwork, C. 2013,. Learning fair representations. In International conference on machine learning
Cynthia Dwork,et al. 2012. Fairness Through Awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference
F. Kamiran and T.G.K. Calders. 2012. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems 33

𝛼𝐿𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝛽𝐿𝑜𝑠𝑠𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 + 𝛾𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐷 = 𝑎𝑖 , 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑁

𝑥𝑖 ∈ 𝑅𝑑

𝑔: 𝑅𝑑 → 𝑅𝑟 i. e. , 𝑔 𝑥𝑖 = 𝑧𝑖
𝑧𝑖 ∈ 𝑅𝑧

𝑧𝑖 ⊥ 𝑎𝑖
𝑍 ⊥ 𝐴

If model involved [hybrid]: 
𝑓(𝑔(𝑋))



Pre-processing: Fair Representation Learning

Bai, H.,et al.(2020). Decaug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. preprint arXiv:2012.09382
FRLTradeoffs: https://blog.ml.cmu.edu/2020/02/28/inherent-tradeoffs-in-learning-fair-representations/

𝐿𝑜𝑠𝑠𝐶 = 𝑥 − 𝑥′ 2 − 𝜆 𝐿𝑜𝑠𝑠𝐴(𝑧)

𝐿𝑜𝑠𝑠𝐶 = 𝛼 𝑥 − 𝑥′ 2 + 𝜆 𝐿𝑜𝑠𝑠𝐴 𝑍𝐴 + 𝛽𝐿⊥

→ A
𝒁𝑨

𝛼𝐿𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝛽𝐿𝑜𝑠𝑠𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠 + 𝛾𝐿𝑜𝑠𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Lots of works using NN
max I(A, g(X)) while min I(A,g(X)) and may max(g(X),Y) 

https://blog.ml.cmu.edu/2020/02/28/inherent-tradeoffs-in-learning-fair-representations/


Pre-processing: Reweighting
• Weight the examples (group, label) to ensure fairness in classification

• Unbalanced learning-related  → e.g., Fair-SMOTE

• Advanced example → SHAPLEY values

Ghorbani, A., & Zou, J. (2019, May). Data shapley: Equitable valuation of data for machine learning. In ICML. PMLR
Joymallya Chakraborty, et al. 2021. Bias in Machine Learning Software: Why? How? What to Do?. 29th ESEC/FSE 2021. ACM

Low value in LFW+A - males – overrepresented

High value in LFW+A –women – underrepresented



In-processing
• Add penalty to objective function during learning → Regularizer

• Prior work: Prejudice remover (Kamishima et al., 2012) 
▪ Prejudice remover regularizer: Based on the degree of indirect prejudice (PI)

Kamishima, T., Akaho, S., Asoh, H., & Sakuma, J. 2012. Fairness-aware classifier with prejudice remover regularizer. Joint ECML-KDD.

Mutual Information between Y and S

𝑷𝑰 = ෍

(𝑦,𝑎)∈𝐷

෠𝑃[𝑦, 𝑠] ln
෠𝑃[𝑦, 𝑠]

෠𝑃[𝑦] ෠𝑃[𝑠]

Logistic Regression

Prejudice remover regularizer

Prejudice remover regularizer L2 Regularization

S: protected/sensitive attribute



In-processing: Adversarial debiasing
• Make the best possible predictions while ensuring that A cannot be derived from them

▪ Demographic Parity 
– Adversary gets ෠𝑌

▪ Equality Of Odds
– Adversary gets ෠𝑌 and 𝑌

▪ Equality Of Opportunity 
– On a given class y → restrict adversary’s training set to X where 𝑌 = 𝑦

Zhang, B. H., et al (2018). Mitigating unwanted biases with adversarial learning. 2018 AAAI/ACM AI, Ethics, and Society (pp. 335-340). https://arxiv.org/pdf/1801.07593.pdf
Towards fairness in ML with adversarial networks. Stijn Tonk. 27 April 2018. URL: https://godatadriven.com/blog/towards-fairness-in-ml-with-adversarial-networks/

𝑝%𝑟𝑢𝑙𝑒 = min(
𝑃{ ෠𝑌 = 1 | 𝐴 = 𝑎}

𝑃 ෠𝑌 = 1 𝐴 = 𝑏}
,
𝑃{ ෠𝑌 = 1 | 𝐴 = 𝑏}

𝑃 ෠𝑌 = 1 𝐴 = 𝑎}
) ≥

𝑝

100

min
𝜃𝑐𝑙𝑓

[𝐿𝑜𝑠𝑠𝑦(𝜃𝑐𝑙𝑓) − 𝜆𝐿𝑜𝑠𝑠𝑍(𝜃𝑐𝑙𝑓, 𝜃𝑎𝑑𝑣)]

https://arxiv.org/pdf/1801.07593.pdf
https://godatadriven.com/blog/towards-fairness-in-ml-with-adversarial-networks/


Post-processing
• Deal with output predictions of the model

▪ Useful in black-box models or if we don’t have access to the train pipeline → NO retraining
▪ Find a proper threshold using the output for each group
▪ Require A to be available in testing → compliance risk

Nengfeng Zhou, et al.. 2021. Bias, Fairness, and Accountability with AI and ML Algorithms. arXiv:2105.06558
F. Kamiran, A. Karim, and X. Zhang, 2012 “Decision Theory for Discrimination-Aware Classification,” IEEE International Conference on Data Mining
G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, 2017 “On Fairness and Calibration,” Conference on Neural Information Processing Systems
M. Hardt, E. Price, and N. Srebro, 2016 “Equality of Opportunity in Supervised Learning,” Conference on Neural Information Processing Systems



More prominent approaches

Causality

Domain-specific
Images

Text
Graphs

Discriminatory Transfer 
Multitask Fairness

XAI
Interpretability

Game theoretical 
approaches



Current 
situation

Quick view on graphs & causality



Current landscape

Mehrabi, N., et al. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1-35



Graphs & Fairness
What fairness need? Defining – detecting – imposing - apply How can Graphs help?

Capture Individual similarity

− Natural node pairwise distance
− Structural similarity
− Role similarity
− Graph Representation Learning (for Nodes & Edges & Graphs)

Capture Group Structure-Behavior
− Community detection
− Inherent data structure in graphs
− Structural Analysis (e.g., Laplacian)

Capture deeper relationships between data

− Node – Edge - classification
− Missing link prediction
− Message passing – Information Flow
− Rewiring – Changing graph structure

Different label bias problems − Semi-Supervised Learning
i.e., help with labels we cannot see

Causality − Strong theory behind graphs
− GNN → SCM

Applied to social problems − Network is the natural structure of data
− Also, everything can be modeled as a graph

XAI
− Interpretable by design
− Friendly straightforward graph explanations
− Great XAI graph-based

Yuan, H., Yu, H., Gui, S., & Ji, S. (2020). Explainability in graph neural networks: A taxonomic survey. arXiv preprint arXiv:2012.15445
Zecevic, M., Dhami, D. S., Velickovic, P., & Kersting, K. (2021). Relating graph neural networks to structural causal models. arXiv preprint arXiv:2109.04173
R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec. 2019 GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS
Bose, A., & Hamilton, W. (2019). Compositional fairness constraints for graph embeddings. ICML. PMLR.



Causality
• Previous definitions relies on Joint probabilities of (X,Y,S,A)

▪ Reactive vision: take everything as given about the world as it is →Observational

• Can we capture social context? Let’s use causal models
▪ How changes in variables propagate in a system, be it natural, engineered or social
▪ What should we do when there’s no direct effect? 

Exploit Structural Causal Model properties to look for biases Neal, B. (2020)

J. Pearl, 2009 Causality: Models, Reasoning and Inference, 2nd ed. New York, NY, USA: Cambridge University Press,
Neal, B. (2020). Introduction to causal inference from a ML perspective. Book (draft). https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
Kusner, M. J., Loftus, J. R., Russell, C., & Silva, R. (2017). Counterfactual fairness.
Loftus, J. R., Russell, C., Kusner, M. J., & Silva, R. (2018). Causal reasoning for algorithmic fairness
Makhlouf, K., Zhioua, S., & Palamidessi, C. (2020). Survey on Causal-based Machine Learning Fairness Notions. arXiv preprint arXiv:2010.09553.
Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., & Schölkopf, B. (2017). Avoiding discrimination through causal reasoning
Zhang, J., & Bareinboim, E. (2018, April). Fairness in decision-making—the causal explanation formula. In Thirty-Second AAAI
Wu, Y. (2020). Achieving Causal Fairness in Machine Learning
S. Chiappa. 2019, Path-specific counterfactual fairness. Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)
Chiappa, S., & Isaac, W. S. (2018,). A causal bayesian networks viewpoint on fairness. In IFIP International Summer School on Privacy and Identity Management
Fairness – Moritz Hardt – Part 2 – MLS2020 - https://www.youtube.com/watch?v=9oNVFQ9llPc&t=1449s

Department

Gender Admission

Data Model

Individual
State of 

the world

Causal fairness 
criteria and 
path-specific 
effects

https://www.bradyneal.com/Introduction_to_Causal_Inference-Dec17_2020-Neal.pdf
https://www.youtube.com/watch?v=9oNVFQ9llPc&t=1449s


Causality: examples
• Counterfactual fairness: 

▪ Outcome probability in factual world = the counterfactual world
▪ How would the world have to be different for a desirable output to occur?
▪ What would have happened if I were different?

• Causal Representation Learning

• Algorithmic Recourse 
▪ → Causality +XAI → explanations + recommendations
▪ Actionable feedback about how to change the outcomes of ML models
▪ “To have your loan approved, you would need to increase your income by $10,000 per year”

Karimi, A. H., Barthe, G., Schölkopf, B., & Valera, I. (2020). A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv:2010.04050
Karimi, A. H., Schölkopf, B., & Valera, I. (2021,). Algorithmic recourse: from counterfactual explanations to interventions. In Proceedings of the 2021 ACM Conference FAccT
A (deeper) look at counterfactuals in explainable AI April 29th, 2021 Annabelle Redelmeier Norwegian Computing Center (Norsk Regnesentral)

“Counterfactuals explain complex models with the use of examples… 
...while recourse tries to find actions that leads to a better outcome” Annabelle Redelmeier



Libraries



Libraries



Datasets



Benchmarking datasets
• Big amount of tabular dataset in all domains

• Every dataset may have intrinsic bias

Quy, T. L., Roy, A., Iosifidis, V., & Ntoutsi, E. (2021). A survey on datasets for fairness-aware machine learning. arXiv
Oneto, L. (2020). Learning fair models and representations. Intelligenza Artificiale, 14(1), 125-152
Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial, 1, 2017
Majumder, S., Chakraborty, J., Bai, G. R., Stolee, K. T., & Menzies, T. (2021). Fair Enough: Searching for Sufficient Measures of Fairness. preprint arXiv:2110.13029.
http://gendershades.org/overview.html - https://nips.cc/media/neurips-2021/Slides/26854.pdf
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History and 
conceptual point 

of view
What should we learn from the past fairness research?
What other conceptual concerns should we consider?



Fairness beginning: 60’s & 70’s

• 60’s: start to quantify bias

• 70’s: From unfairness to Fairness
− FP & FN rates
− Fair use of the test, rather than the scores themselves

• Mid 70’s: halt, Why?
− No analyses to unequivocally indicate fairness
− No clear procedures to avoid unfairness
− Disagreement in views of fairness view between professionals and 

general public
“Fairness actually obscure the fundamental problem, which is to find 
some rational basis for providing compensatory treatment for the 

disadvantaged” (Melvin R Novick et al. 1976)

• Rediscovered  by ML around 13 year ago (Calders et al. 2009)

Hutchinson, B., & Mitchell, M. 2019. 50 years of test (un) fairness: Lessons for machine learning. FAccT 2019
Nancy S Cole and Michael J Zieky. 2001. The new faces of fairness. Journal of Educational Measurement 38, 4
Rebecca Zwick and Neil J Dorans. 2016. Philosophical Perspectives on Fairness in Educational Assessment. In Fairness in Educational Assessment and Measurement
T. Anne Cleary. 1966. Test bias: Validity of the Scholastic Aptitude Test for Negro and white students in integrated colleges
Calders, Kamiran, and Pechenizkiy, “Building Classifiers with Independency Constraints,” in In Proc. IEEE ICDMW, 2009, 13–18
Kamiran and Calders, “Classifying Without Discriminating,” in Proc. 22Nd International Conference on Computer, Control and Communication, 2009.

1966 1968 1971 1971 1973 1976

Guion Cleary Thorndike Darlington Cole Peterson and Novick

Shout out to pioneers

− DON’T reinvent the wheel

− DON’T forget actual objective 
→ compensatory treatment to disadvantaged

− DON’T get stacked in discussions far from real-world problems

− DON’T be far from practical needs of society, politics & law

− Work in political and law implication

− Relating fairness debates to ethical theories and value systems

− ML Fairness community should be more aware of our own 
implicit cultural biases

What should we learn?



Fair ML and law

“Careful attention should be paid to legal and public concerns about fairness. The 
experiences of the test fairness field suggest that in the coming years, courts may start 

ruling on the fairness of ML models. Therefore, If technical definitions of fairness stay too 
far from the public’s perceptions of fairness, then the political will to use scientific 

contributions in advance of public policy may be difficult to obtain”

Hutchinson, B., & Mitchell, M. 2019. 
50 years of test (un) fairness: Lessons for machine learning. FAccT 2019



Other cultural and conceptual challenges

Even we are looking for bias, we are 
inducing bias

PUBLIC’S NOTION OF FAIRNESS
Explicitly connect fairness criteria to 

different socio-cultural and 
philosophical values

Remind: Fairness and unfairness are 
related but different concepts 

Example of conceptual bias: Why groups should be treated as discrete categories?

• Most definitions of protected attribute-group relies on categoric division → implicit cultural bias & unstable social construct
• Other possibility: intersectional modelling → Protected attribute as continuous variables

• Quantify fairness along one dimension (e.g., age) conditioned on another dimension (e.g., skin tone)

e.g., Use Computer vision clustering of skin tones instead of pre-defined ethnics

CONTEXT MATTERS
Quantitative techniques 
+ policy-level questions

Try to unify fairness definition and 
framework

Make Fair ML research accessible to
general public, other researchers

Make methods flexible to adapt to each 
situation, context and use

Politics and law implication

From equality to equity
Give each one the resources that each 

one need to reach to the same point



Wrapping up



Conclusion

• Don’t feel overwhelmed by the big amount methods and measures!
▪ Method depends on task, and technical context
▪ Definitions and metrics depends on the context
▪ Development and relationship of the measures with ethics → Now you choose context – experts 

– social and ethical analysis

• More work needed in ethical-cultural aspect
▪ Equity → Considering individual resources
▪ Continual protected attributes
▪ Social-Law-Political needs close relationship

• Technical takeaways
▪ Beyond observational → Causality
▪ Deep structural data relationship →Graphs
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