Trustworthy AI — balancing technical, human, and regulatory dimensionsThis thesis presents a sociotechnical framework for implementing Trustworthy Artificial Intelligence (TAI), integrating technical, human, and regulatory aspects. It emphasizes the importance of aligning algorithmic development with societal needs and legal standards throughout the AI lifecycle. First, the thesis focuses on algorithmic fairness and proposes two novel methods to mitigate algorithmic discrimination in decision-making (FairShap) and in social networks (ERG). Next, the thesis explores the challenge of provably optimal human-AI complementarity in a resource allocation task. Finally, the thesis investigates the interplay between AI and Spanish labor legislation. Concludes that trustworthiness in AI systems requires a holistic understanding of data, algorithms, institutions, and regulatory factors.
Read Adrian’s PhD thesis: PDF. See Adrian’s thesis defense presentation (2026/09/26): Video.
This thesis advances a sociotechnical framework for effectively implementing Trustworthy Artificial Intelligence (TAI) by aligning algorithmic techniques, human oversight, and regulatory practice throughout the AI lifecycle. It focuses on AI-induced harms and their mitigation through:
Algorithmic contributions
Human–AI complementarity
Governance & law
Overall, the thesis argues that achieving TAI requires viewing trustworthiness as an emergent property of sociotechnical systems—the interplay of data, algorithms, institutions, and regulation—and provides practical guidance for researchers, practitioners, and policymakers.
AO24 — Arnaiz-Rodriguez, A., & Oliver, N. (2024).
Towards Algorithmic Fairness by means of Instance-level Data Re-weighting based on Shapley Values. DMLR @ ICLR 2024.
Link: https://openreview.net/forum?id=ivf1QaxEGQ
ACO25 — Arnaiz-Rodriguez, A., Curto Rex, G., & Oliver, N. (2025).
Structural Group Unfairness: Measurement and Mitigation by Means of the Effective Resistance. ICWSM 2025, 19(1), 83–106.
Link: https://doi.org/10.1609/icwsm.v19i1.35805
ACTOG25 — Arnaiz-Rodriguez, A., Corvelo, N., Thejaswi, S., Oliver, N., & Gomez-Rodriguez, M. (2025).
Towards Human–AI Complementarity in Matching Tasks. HLDM @ ECML-PKDD 2025.
Link: https://arxiv.org/abs/2508.13285
AL24a — Arnaiz-Rodriguez, A., and Losada Carreño, J. (2024). (EN: The Intersection of Trustworthy AI and Labour Law. A Legal and Technical Study from a Tripartite Taxonomy) La intersección de la IA fiable y el Derecho del Trabajo. Un estudio jurídico y técnico desde una taxonomía tripartita. Revista General de Derecho del Trabajo y de la Seguridad Social, Iustel, 69. [Iustel] Link: https://www.iustel.com/v2/revistas/detalle_revista.asp?id_noticia=427491
AL24b — Arnaiz-Rodriguez, A., and Losada Carreño, J. (2024). (EN: Studying Causality in Algorithmic Decision Making: the Impact of AI in the Business Domain) Estudio de la causalidad en la toma de decisiones algorítmicas: el impacto de la IA en el ámbito empresarial. Revista Internacional y Comparada de Relaciones Laborales y Derecho del Empleo, ADAPT, 12(3). Link: https://ejcls.adapt.it/index.php/rlde_adapt/issue/view/105
ABEO22 — Arnaiz-Rodriguez, A., Begga, A., Escolano, F., & Oliver, N. (2022).
DiffWire: Inductive Graph Rewiring via the Lovász Bound. LoG 2022, PMLR 198:15:1–15:27.
Link: https://proceedings.mlr.press/v198/arnaiz-rodri-guez22a.html
AE25 — Arnaiz-Rodriguez, A., & Errica, F. (2025).
Oversmoothing, “Oversquashing”, Heterophily, Long-Range, and more: Demystifying Common Beliefs in Graph Machine Learning. MLG @ ECML-PKDD 2025 (Best paper).
Preprint: https://arxiv.org/abs/2505.15547
ABEOH22 — Arnaiz-Rodriguez, A., Begga, A., Escolano, F., Oliver, N., & Hancock, E. (2022).
Graph Rewiring: From Theory to Applications in Fairness. Tutorial @ LoG 2022.
Link: https://ellisalicante.org/tutorials/GraphRewiring
AV24 — Arnaiz-Rodriguez, A., & Velingker, A. (2024).
Graph Learning: Principles, Challenges, and Open Directions. Tutorial @ ICML 2024.
Link: https://icml.cc/virtual/2024/tutorial/35233